
  

  
Abstract—D-NUCA caches are cache memories that, thanks to 

banked organization, broadcast search and promotion/demotion 
mechanism, are able to tolerate the increasing wire delay effects 
introduced by technology scaling. As a consequence, they will 
outperform conventional caches (UCA, Uniform Cache 
Architectures) in future generation cores. 

Due to the promotion/demotion mechanism, we observed that 
the distribution of hits across the ways of a D-NUCA cache varies 
across applications as well as across different execution phases 
within a single application. In this work, we show how such a 
behavior can be leveraged to improve the D-NUCA power 
efficiency as well as to decrease its access latency. 

In particular, we propose: 1) A new micro architectural 
technique to reduce the static power consumption of a D-NUCA 
cache by dynamically adapting the number of active (i.e. 
powered-on) ways to the need of the running application; our 
initial evaluation shows that a strong reduction of the average 
number of active ways (36.9%) is achievable, without 
significantly affecting the IPC (-2.97%), leading to a resultant 
reduction of the Energy Delay Product (EDP) of 30.9%. 2) A 
strategy to tune the characteristic parameters of the proposed 
technique. 3) A variant of the technique which leads to a more 
aggressive power reduction strategy 
 

Index Terms—Cache memories, NUCA, Dynamic-NUCA, 
Adaptable Computing, Wire Delay, Power Consumption 

I. INTRODUCTION 
MOS technology trends and bandwidth demands of cores 
are leading to the use of large, on-chip, level-two (L2) 

and level-three (L3) cache memories. For high clock 
frequency designs, the access latency of such caches are 
dominated by the wire-delay [1]. In order to reduce this effect, 
NUCA caches (Non-Uniform Cache Architectures) [2], [3] 
have been proposed as a new paradigm for on-chip L2 cache 
memories. 
NUCA caches. In a NUCA architecture, the cache is 
partitioned into many independent banks, while the 
communications among the banks and the cache controller are 
supported by a switched network. This organization allows 
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some banks to be closer to the processor, hence allowing 
shorter access latencies to these banks with respect to banks 
that are located farther away. The mapping between cache 
lines and physical banks can either be Static or Dynamic 
(namely S-NUCA and D-NUCA) [2]. In the former, each line 
can exclusively reside in a single predetermined bank and, in 
the latter (Fig. 1), each line can be mapped to one of a set of 
different banks, similarly to a set associative cache, and it can 
dynamically migrate from one bank to another. As shown in 
Fig. 1, in a D-NUCA cache the banks are logically grouped in 
rows and columns, each bank containing a fixed number of 
lines. The entire address space is spanned on the banks 
belonging to each row. Each bank belonging to a column 
behaves like a single way of a set associative cache, so a line 
is allowed to reside only in a single bank belonging to that 
column. When a cache line search is performed, the controller 
first determines the column that could contain the requested 
data using the lowest-order bits of the index field from the 
address, then it broadcasts the request to all the banks 
belonging to that column. As soon as a hit happens in one of 
these banks, the request is satisfied without the need of 
waiting for the replies from the other, farther, banks. To 
further reduce access latencies, the “promotion/demotion” 
mechanism is adopted: if a hit happens in a row other than the 
first, the cache line is promoted by swapping it with the line 
that holds the same position in the next row closer to the 
controller. If a miss happens, the new line is inserted in the 
farthest bank (row 7 in Fig. 1), possibly evicting any 
corresponding line. As a consequence, the most frequently 
accessed lines are likely to be located into the banks closer to 
the processor, thus improving the access latency. With such a 
policy, D-NUCA caches succeed in achieving high hit rates 
while keeping the access latency low, in spite of the wire-
delay effects introduced by high clock rates and technology 
scaling. These characteristics make D-NUCA an attractive 
cache architecture for next generation high performance chips, 
where large storage capabilities, high clock rates and low 
memory access latencies will be required. 

Problem. Big SRAM structures, like the ones employed in 
a modern L2 cache, exhibit high energy requirements, 
especially due to the static component caused by leakage 
currents typical of deep submicron CMOS technologies [24] 
[25]. A previous work [22] highlights that D-NUCA caches 
are better performing and more energy efficient than UCA and 
S-NUCA caches. The D-NUCA scheme exhibits an increase 
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of the dynamic power  components due to the higher number 
of bank accesses and network transmissions, but this is 
overwhelmed by the static energy saving due to the shorter 
execution time achieved. Anyway, like in the UCA and S-
NUCA  schemes, the D-NUCA energy budget is dominated 
by leakage, which consequently should be the most effective 
objective for power-saving techniques. 

 

 
 
Fig. 1 – The reference D-NUCA cache employed in our study. This 8MB 
D-NUCA cache is made up of 128 banks (the squares in the picture) organized 
in rows and columns; each row represents a way, so that the cache behaves 
like an 8-way set associative cache. The rounded corner contours highlight a 
single row and a single column of banks. The bold line shows the path 
followed by a request for a specific cache line: from the address, the column 
to be searched is determined (the 11th in the figure); a request is sent along the 
horizontal links till the column is reached; then the request is forwarded along 
the column. At each switch (the black circles) belonging to that column the 
request is forwarded to the cache banks to perform the accesses. 
 

Contribution. As a consequence of the 
promotion/demotion mechanism, we observed that in a D-
NUCA cache the hits are not uniformly distributed across the 
different ways. Instead, their distribution shows strong 
variations across different applications as well as across 
different execution phases within a single application. Such a 
behavior suggests that not all the cache ways are needed 
during the whole execution of a program: due to their poor 
usage, the least frequently accessed ways could be powered-
off without significantly affecting performance. Accordingly, 
a reduction of the cache’s static power consumption can be 
achieved. Moreover, powering off some ways may also be 
useful to reduce both the miss detection time and the network 
traffic, as there are fewer banks that must be accessed in order 
to detect a cache miss. This feature could have beneficial 
effects on performance as well as on dynamic power 
consumption. 

In this work we introduce a power-saving technique 
targeted at D-NUCA caches, called “Way Adaptable”, which 
leverages our observations on the distribution of hits across 
the different ways. This technique is based on a mechanism to 
dynamically turn on/off the ways, according to the need of the 
running application. In particular, our contribution can be 
stated as follows: 1) We develop a specific algorithm to adapt 
the number of active ways of a D-NUCA cache to the needs of 
the running application. The metric of the algorithm and the 
selection of the way to be powered off are based on the 
intrinsic D-NUCA data line ordering. The use of the proposed 

algorithm implies a reduction of the power consumption, 
cache access time, and network traffic with a narrow 
performance loss (average 36.9% reduction of number of 
active ways, 29% reduction of bank access requests, 3.25% 
reduction of cache access latency, 2.97% degradation of IPC, 
34.6% reduction of energy consumption and 30.9% reduction 
of EDP – Energy Delay Product). 2) We propose a 
methodology to tune, on an application basis, the parameters 
of the proposed algorithm  and we show the sensitiveness of 
such parameters to the change of the running application. 3) 
We propose a variant of the original Way Adaptable scheme, 
called Differential Way Adaptable, which is even more power 
preserving.  

II. ANALYSIS OF THE DISTRIBUTION OF HITS IN A 
D-NUCA CACHE 

As a consequence of the promotion mechanism, during the 
execution of an application, in a D-NUCA cache the hits are 
not uniformly distributed across the different ways. In fact, as 
also observed in [2], most frequently accessed data tend to 
migrate toward the controller, while least frequently accessed 
data migrate to the opposite side. Particularly, we have found 
that the distribution of hits across the ways varies between 
different applications as well as between different execution 
phases of the same application. 

We have conducted an analysis of the distribution of cache 
hits for the SPEC CPU2000 applications listed in Table 2. We 
now report illustrative results that show that applications have 
different associativity needs for different execution phases. 

Assuming the D-NUCA cache represented in Fig. 1, Fig. 2 
shows the distribution of cache hits across the different ways 
for the SPEC CPU2000 applications mcf and twolf. For both 
the applications, the number of hits decreases when moving 
from Way0 to Way7. While the hits for mcf span the entire 
cache, twolf exhibit a different behavior: the hits involve only 
the first two ways, which are able to fully contain the 
application’s working set. Fig. 3 shows the distribution of hits 
for parser when executing 10 Millions of instructions, starting 
at 3.709B and at 3.859B respectively. In the first case the hits 
are concentrated into the first 4 ways, while in the second case 
they span quite uniformly the entire cache. 

These results suggest that, although a large highly 
associative L2 D-NUCA cache most of the time is able to 
contain the working set of an application, there are many 
cases in which the use of such a large cache is unnecessary 
and it wastes space and power. On the other hand, the use of 
caches with a limited associativity could be unsuitable (i.e. 
generates too high miss rates and too low IPC) for those 
applications whose working set requires a high associativity, 
while tuning the associativity to a single application would 
mean losing the flexibility required by general-purpose CPUs. 
Furthermore, both the solutions don’t fully solve the problem 
because of the different locality exhibited by different 
execution phases of the same application, as shown if we 
compare the results in Fig. 3. 



  

Fig. 2 – Distribution of cache hits across the different ways of the reference 
D-NUCA cache for the mcf application, in the running phase included 
between 5.08 and 5.09 billion of committed instructions, and for the twolf 
application, in the running phase included between 581 and 591 million of 
committed instructions. 
 

Fig. 3 – Distribution of cache hits across the different ways of the reference D-
NUCA cache for the parser application, in the running phase included 
between 3.709 and 3.710 billion of committed instructions, and in the phase 
between 3.859 and 3.860 billion of committed instructions. 

 
Based on these considerations, we propose to adopt a 

highly associative D-NUCA cache as a basic architecture, and 
to introduce a mechanism that allows to dynamically switch 
on and off the ways as a function of the level of associativity 
needed by the current execution phase of the running 
application. We call this structure “Way Adaptable D-NUCA 
cache”. 

III. WAY ADAPTABLE D-NUCA CACHE 
In a Way Adaptable D-NUCA cache, each way can be 

dynamically turned on/off during the execution of an 
application, depending on the locality exhibited by the current 
execution phase. To decide when to turn on new ways and 
when to shut down those that are unnecessary, a prediction 
mechanism for the working set size is needed. Fig. 4 shows 
the one we developed. Two counters accumulate the number 
of hits in the first and the farthest powered on ways during the 
program execution. Every K cache hits the ratio D between 
the counters is evaluated and compared against two thresholds 
T1 and T2  in order to decide to shut down a way (if D < T1) or 
to turn on a new way (if D > T2) or to stay in the current 
configuration (if T2 > D > T1). 

The hardware complexity of the proposed prediction 
mechanism is very limited. Only three counters and the 
combinatorial logic for the two steps of the algorithm in Fig. 4 
are needed. As stated in [15], the impact of similar logic on 
both the dynamic and the static power consumption is 
negligible, when compared to a moderately sized cache. 

All the control logic is assumed to be embedded in the 
cache controller, while the on/off switching of ways is 
realized via the Gated-Vdd transistor technology [9]. Such a 
technique has shown to be particularly effective in reducing 
static power consumption, especially for L2 caches [19]. 

 

 
Fig. 4 – Description of the proposed algorithm to decide when to switch on/off 
ways in a Way Adaptable D-NUCA cache. Note that “farthest” and “closest” 
refer to the position of the ways with respect to the cache controller. 
 

TABLE 1 
PARAMETERS FOR THE SIMULATED SYSTEM 

AND FOR THE PREDICTION ALGORITHM 
Manufacturing Technology 70nm 
Cpu Architecture Alpha 21264 
L1 d-cache 64 KB, 2-way, 64 bytes block, 

3 cycle hit latency 
L1 i-cache 64 KB, 2-way, 64 bytes block, 

1 cycle hit latency 
L2 unified cache 8 MB, 8-way set associative 
L2 NUCA organization 16 x 8 banks 
L2 banks 64KB, 64 bytes block, 

3 cycle data access latency, 
2 cycle tag access latency 

L2 interconnection network switched network, 
1 cycle latency per hop 

Main memory latency 300 cycles 
K 100000 
T1 0.005 
T2 0.02 

 
TABLE 2  

THE BENCHMARKS FROM THE SPEC CPU2000 SUITE USED TO EVALUATE THE 
WAY ADAPTABLE TECHNIQUE 

 Phase  Phase 
SPECINT200

0 FFWD RUN SPECFP2000 FFWD RUN 

176.gcc 2.367B 300M 172.mgrid 550M 1.06B 
181.mcf 5.0B 200M 177.mesa  570M  200M  

197.parser 3.709B 200M 173.applu 267M 650M 
253.perlbmk 5.0B 200M 179.art 267M 200M 

256.bzip2 744M 1.0B 178.galgel 4.0B 200M 
300.twolf 511M 200M 183.equake 4.459B 200M 

 

IV. EXPERIMENTAL METHODOLOGY  
The evaluation of the proposed solution has been performed 

via execution driven simulation, employing a modified 
version of  the sim-alpha simulator [8]. We built an extended 
version of the simulator that is able to make a cycle accurate 
simulation (and provide related statistics) of the NUCA cache 
memory and of the communication network taking into 
account the propagation of packets over the links and 
throughout the switches, the bank accesses and the conflicts in 
the use of such resources. 

We compare the performance of a Way Adaptable D-
NUCA cache with the baseline D-NUCA cache by measuring 
the IPC (Instructions Per Cycle), the average number of active 
ways (i.e. the average number of ways that are powered on 
during the execution time of an application), the average 

 
Every K L2 cache hits do: 
{ 

D = farthest_way_hits_counter  /first_way_hits_counter; 
 if (D < T1) then 

“shut down the farthest powered-on way”; 
 else if (D > T2) then 

“turn on the closest powered-off way”; 
 else “keep current configuration”; 
  
 last_way_hits_counter=0; 
 first_way_hits_counter=0; 
} 
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access latencies and the number of accesses to the cache 
banks. For both the designs, the system parameters and the 
numerical values for the parameters K, T1 and T2 of the 
prediction algorithm are given in Table 1. Table 2 lists the 
benchmarks from the SPEC CPU2000 suite we used in the 
simulations. The system parameters and the benchmarks 
together with their running conditions are the same as 
described in [2]. 

Fig. 5 and Fig. 6 respectively show the achieved IPC and 
the average number of active ways for plain D-NUCA and 
Way Adaptable D-NUCA caches, under the SPEC CPU2000 
workload described in Table 2. The IPC achieved by the Way 
Adaptable scheme is close to the one achieved by the 
reference plain D-NUCA, with a narrow average 2.97% 
performance loss (last bars in Fig. 5). The average number of 
active ways is considerably lower for the Way Adaptable D-
NUCA cache and, with respect to the baseline D-NUCA, it is 
reduced by 36.9% (last bars in Fig. 6). 
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Fig. 5 – The IPC (Instructions Per Cycle) achieved by the D-NUCA structures 
considered in our evaluation for the different benchmarks and on average. 
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Fig. 6 – The average number of active ways for the D-NUCA structures 
considered in our evaluation for the different benchmarks and on average. 
 

A quantitative evaluation of the energy consumption of the 
L2 cache and main memory subsystem has been performed 
assuming an underlying energy model proposed in [22]. Since 
static energy largely depends on temperature, here we assume 
a fixed operating temperature of 80°C, which is quite 
representative of typical working conditions of on-chip L2 
caches [26]. Fig. 7 shows the normalized energy consumption 
for Way-Adaptable and plain D-NUCA caches under the 
given workload. 10 benchmarks out of 11 benefit from the 
application of the proposed technique, with an average 
reduction of energy consumption by 34.6%. 
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Fig. 7 – Comparison of energy consumption (normalized with respect to plain 
D-NUCA) for plain and Way-Adaptable D-NUCA caches at a fixed 
temperature of 80°C. The trend shows a significant reduction of energy 
consumption achieved by the proposed technique. Only for the mcf benchmark 
the energy consumption is larger for the Way-Adaptable scheme since the 
longer execution time (due to performance degradation) introduces extra static 
energy consumption, which is not balanced by the reduction of active ways. 
 

A representative synthetic metric to evaluate the goodness 
of micro-architectural solutions is the EDP (Energy Delay 
Product) [23]. Fig. 8 shows the EDP achieved by the Way-
Adaptable D-NUCA scheme normalized with respect to plain 
D-NUCA. The average improvement is 30.9%. The exhibited 
trend is similar to the one exhibited by normalized energy 
since this technique is able to limit the performance 
degradation in almost all cases. 
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Fig. 8 – Comparison of achieved EDP (normalized with respect to plain 
D-NUCA) for plain and Way-Adaptable D-NUCA caches at a fixed 
temperature of 80°C. 
 

TABLE 3  
AVERAGE  LATENCIES AND NUMBER OF BANK REQUESTS 

FOR PLAIN AND WAY ADAPTABLE D-NUCA 
 Plain D-NUCA Way Adaptable D-NUCA 
Hit latency 13.34 cycles 13.13 cycles 
Miss latency 23.11 cycles 15.99 cycles 
Avg. latency 14.14 cycles 13.68 cycles 
Avg. n. of bank requests  143.46 Millions 101.23 Millions 

 
As one would expect, turning off one or more ways also 

helps reducing the average cache latencies: one can turn off 
the remotely located ways, so new data enter the cache closer 
to the controller and they are promoted to the faster ways after 
a lower number of hits; at the same time a cache miss 
detection requires the access to a lower number of banks. 
Table 3 lists the average latency values we measured for the 
Plain D-NUCA, compared with the Way Adaptable D-NUCA 
cache. With respect to the Plain D-NUCA, we obtain a 30% 



  

reduction in miss detection time and a 3.25% reduction in 
overall cache access time. For the same reasons, the cache 
network traffic and related power consumption are reduced: 
on each cache reference a reduced number of physical banks 
must be accessed. Table 3 also reports the average number of 
requests that are performed on the cache banks, showing a 
29% reduction of  the number of requests for the Way 
Adaptable case. 

V. ALGORITHM PARAMETERS TUNING 
The values for T1 and T2 thresholds reported in Table 1 

were heuristically determined. The chosen values lead to a 
good average  behaviour of the Way Adaptable D-NUCA 
cache. However, the accuracy of the prediction algorithm and 
thus the performance/power trade-off can be improved by 
acting on such parameters. In particular, in this section we 
introduce a strategy that is suitable to tailor the values of 
thresholds T1 and T2 to a single specific application. 

In the algorithm (Fig. 4), a reconfiguration event is 
performed once every a fixed number K of L2 cache hits (i.e 
once every 100000 cache hits). Each reconfiguration event is 
one of: “turn on a way” (+1 way), “turn off a way” (-1 way), 
or “keep current configuration”. The first step of our strategy 
is to identify the sequence of reconfiguration events for the 
given application that, among all the possible sequences, is 
optimal for a chosen goodness metric.  As a metric, we have 
selected the miss rate but other alternatives are possible such 
as IPC, EDP, etc. To determine the optimal reconfiguration 
sequence, we would need to explore all the possible 
combinations and calculate the metric for each one, resulting 
in an extremely high number of tests to perform (i.e. a 
simulation has to be run for each possible sequence to be 
evaluated). So an incremental approach can be adopted: after a 
first warm-up phase, the program’s execution is halted every 
K cache hits, and the execution state is saved. Then the 
execution is restarted in three different runs assuming a 
different reconfiguration event being applied at the start of 
each run; at the end of the three runs, the results are collected 
and the most suitable reconfiguration event is chosen and 
assumed to be applied; in particular (since higher 
associativities and larger capacities naturally lead to lower 
miss-rates) the reconfiguration event that is chosen is the most 
conservative one which leads to a miss-rate within 1% of the 
lowest achievable miss-rate, meaning that we choose the event 
which allows the highest energy consumption reduction and 
which limits the miss-rate degradation to 1% with respect to 
the optimal case. Starting from it, and focusing on the next 
interval, three new simulations are conducted in the same way. 
This procedure is repeated up to the end of the selected 
application. Fig. 9 depicts the described strategy. 

At each step, the selected reconfiguration events place 
restrictions on the values of T1 and T2, so, at the end, we 
obtain a set of inequalities for the two thresholds; solving 
them we obtain values for T1 and T2. If the set is not fully 
solvable, we can restrict the number of inequalities reducing 

the accuracy of the proposed strategy.  The main drawback of 
the procedure described above is that the optimal 
reconfiguration events are determined according to a metric 
that is evaluated locally to each stable phase, so the 
reconfiguration sequence results to be a pseudo-optimal one.  

 

 
Fig. 9 – Application of the procedure to identify the pseudo-optimum 
reconfiguration sequence for a simple case. In the example the selected 
sequence is: {+1 way; -1 way; keep current configuration}. 
 

VI. DIFFERENTIAL WAY ADAPTABLE TECHNIQUE 
The availability of the pseudo-optimal reconfiguration 

sequence introduced in the previous section, gives us the 
chance to explore some variants of the Way Adaptable 
technique. In this section we illustrate the “Differential Way 
Adaptable” technique,  a different version of the technique, 
which is more aggressive in terms of number of powered off 
ways, without further affecting the IPC. 

Starting from the pseudo-optimal reconfiguration sequence, 
we have found that, if  we calculate at the end of each interval 
the following value: 

i

ii

D
DDQ 1−−

= , 

where Di is the ratio between the number of hits on the first 
way and the number of hits on the last way at the step i (as 
calculated in the original Way Adaptable algorithm), we 
obtain a value Q that reflects the actual trend of cache memory 
usage of the running program more accurately than the 
previously used D. This value, similarly to what happens in 
the original technique, is compared against the two thresholds 
T1 and T2 to trigger a reconfiguration event. In order to 
determine the value of these thresholds, we applied the same 
strategy described in the previous section, thus tailoring them 
to a  specific application.  

Fig. 10 and Fig. 11 show the IPC and the average 
associativity for two benchmarks, equake and perlbmk, 
comparing the plain D-NUCA scheme, the Way Adaptable 
scheme and the Differential Way-Adaptable scheme. For each 
application, the Differential Way Adaptable scheme uses the 
two thresholds that has been obtained by the application of the 
strategy described so far. As the figures suggest, using 
thresholds that are tuned on a specific application results in a 
bigger static power reduction, without affecting performances. 

In order to evaluate the sensitivity of performance and 
power reduction to different values of the two thresholds, we 



  

measured the IPC (Fig. 12)  and the average associativity (Fig. 
13) for the entire workload, first applying a Differential Way 
Adaptable D-NUCA scheme with thresholds tuned on equake 
(Diff. WA D-NUCA 1), then applying a Differential Way 
Adaptable D-NUCA scheme with thresholds tuned on 
perlbmk (Diff. WA D-NUCA 2). For each benchmark, the two 
schemes exhibit similar behaviors, as suggested by the values 
of IPC and average associativity. Thus, even if the thresholds 
are tuned on a specific application, the algorithm still exhibits 
a good   effectiveness when applied to other applications. 
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Fig. 10 – IPC and average associativity for the equake application, comparing 
plain, Way Adaptable (WA) and Differential Way Adaptable (Diff. WA) 
schemes, under the same experimental conditions. For the Differential version, 
the employed thresholds are the following: T1 = -1.2, T2 = 0.6; for the original 
Way Adaptable version, the values of the thresholds are shown in Table 1. 
 

perlbmk - IPC

0,00

0,20

0,40

0,60

0,80

1,00

1,20

Plain WA Diff. WA

perlbmk - Avg. associativity

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

Plain WA Diff. WA

 
Fig. 11 – IPC and average associativity for the perlbmk application, 
comparing plain, Way Adaptable (WA) and Differential Way Adaptable (Diff. 
WA) schemes, under the same experimental conditions. For the Differential 
version, the employed thresholds are the following: T1 = -0.6, 
T2 = 0.33; for the original Way Adaptable version, the values of the thresholds 
are shown in Table 1. 
 

 
Such results indicate that, if the application to be run is 

known in advance, the parameters of the Diff. Way Adaptable 
technique can be customized in order to obtain the highest 
power reduction without affecting performances. The 
thresholds values could be determined with a profile-driven 
approach at compile time, adopting the methodology 
described above. However, if the application is not known in 
advance and thus it is not possible to accurately calculate the 
thresholds, the use of standard medium values is not 
disadvantageous and still allows to obtain a relevant static 
power reduction and limited performance loss. 

Fig. 12 and Fig. 13 also show a comparison of the two Diff. 
Way Adaptable D-NUCAs with Plain D-NUCA and with the 
traditional Way Adaptable D-NUCA. The Diff. Way 
Adaptable technique results to be more aggressive than the 
traditional Way Adaptable in turning off ways (45% as 

average), at the cost of a limited IPC loss ( 7% as average). 
 

IPC

0,0

0,5

1,0

1,5

2,0

2,5

ap
plu art

bz
ip2

eq
ua

ke
ga

lgel
gc

c
mcf

mes
a

mgri
d

pa
rse

r

pe
rlb

mk
tw

olf

av
era

ge

Plain D-NUCA WA D-NUCA Diff. WA D-NUCA 1 Diff. WA D-NUCA 2
 

Fig. 12 – IPC for the entire workload, comparing plain, Way Adaptable (WA), 
Differential Way Adaptable (Diff. WA D-NUCA 1) with T1 and T2 tuned for 
equake, Differential Way Adaptable (Diff. WA D-NUCA 2) with T1 and T2 

tuned for perlbmk. 
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Fig. 13 – Average associativity for the entire workload, comparing plain, Way 
Adaptable (WA), Differential Way Adaptable (Diff. WA D-NUCA 1) with T1 
and T2 tuned for equake, Differential Way Adaptable (Diff. WA D-NUCA 2) 
with T1 and T2 tuned for perlbmk. 

VII. RELATED WORKS 
 

The D-NUCA cache architecture was proposed in [2] [3], 
showing that a dynamic NUCA structure achieves 1.5 times 
higher IPC than a traditional Uniform Cache Architecture 
(UCA) when maintaining the same size and manufacturing 
technology. Extensions of the original idea are NuRapid [10] 
and Triangular D-NUCA cache [11]. They improve 
performance by decoupling tags from data or by changing 
mapping and size of each way. An energy/performance trade 
off evaluation for NUCA and its comparisons with UCA is 
given in [22]. 

Many techniques have been proposed to dynamically adapt 
the caches size to the working set size [4]. Most techniques 
are focused on performances and dynamic power saving and 
are not directly applicable for reducing the static power 
consumptions. As an example, in [13], [14], [15] the Selective 
Cache Ways and similar techniques have been proposed. They 
require an always powered on cache to reduce miss rate and 
dynamic power consumption.  

The techniques focusing on the reduction of static power 
consumption rely on putting memory cells in a low leakage 



  

mode either loosing or maintaining their data contents. 
MTCMOS Caches [17] and Drowsy Caches [18] are data 
preserving techniques while Decay Lines Caches [16] is a data 
loosing technique. In order to utilize them in a D-NUCA 
cache, the characteristic concepts and parameters on which 
they rely need to be redefined: in fact, because of the 
promotion/demotion mechanism, D-NUCA caches exhibit a 
different access pattern to data lines with respect to a UCA 
cache. However, it is worth noting that the Way Adaptable 
technique can be used in conjunction with such other 
techniques: in fact while the former acts increasing or 
decreasing the cache size/associativity, the later work at block 
granularity without further modifying the cache behavior. 
Thus, it is possible to conjunctly adopt them in a D-NUCA 
cache obtaining the benefits of  both.  

Slumberous cache [20] is another data preserving technique 
which uses the LRU/MRU state of each cache line to adapt the 
level of activity of the memory cells and consequently their 
leakage power consumption. The direct application of such 
techniques to a D-NUCA would imply a relevant logic 
complexity to calculate the LRU/MRU state on each 
reference. The Way Adaptable Caches [12] is a data loosing 
technique that predicts cache needs adopting a metric based 
on the LRU/MRU state of each way and turn on and off entire 
ways based on a random choice. Similarly to previous one, the 
direct application of such technique to a D-NUCA would 
imply the complexity of calculating the LRU/MRU state; 
furthermore the random choose of a way to turn off  wouldn’t 
take into account the actual data usefulness. Our proposed 
technique is as an extension of such technique to the D-
NUCA cache. 

Finally, our work is related to the more general framework 
of detecting program phases [6] to adapt at runtime the 
number of active resources to the need of the running 
program. A comparison of the performances of both ideal and 
practical implementations of such techniques may be found in 
[21]. 

VIII. CONCLUSIONS 
D-NUCA caches are a promising technology as they are 

able to hide to the CPU the wire-delay effects introduced by 
high clock rates and technology scaling. Anyway, similarly to 
the other L2 cache structures, they are affected by high power 
requirements. In this work we have shown that D-NUCA 
cache power efficiency can be enhanced by dynamically 
adapting the size of the cache to the actual needs of the 
running applications. The size adaption is obtained by using a 
simple prediction algorithm that decides to turn on and off the 
cache ways and has limited drawback on performance. 

Experimental results have shown that, in a Way Adaptable 
D-NUCA cache, the average number of active ways can be 
reduced by 36.9%, on average, with respect to a conventional 
D-NUCA with a slight 2.97% average IPC reduction. 
Consequently the average energy consumption is reduced by 
34.6% and the average Energy Delay Product is improved by 

30.9%. Differently from what happens in previously proposed 
power reduction techniques, reducing the number of active 
ways contributes also to reduce hit and miss cache latencies 
and the network traffic.  

A methodology has been defined to tune, on an application 
basis, the parameters of the prediction algorithm via a pseudo-
optimal reconfiguration sequence that can be determined 
throughout simulation. Finally, an alternative prediction 
algorithm has been presented  

Future works will be focused on further investigation of 
prediction techniques that are able to better reflects the 
memory needs of the running application. In particular  
techniques that will be able to turn on or off two or more ways 
on each step will be evaluated. Besides the study of the 
proposed techniques with multithreaded workloads  in a 
multicore environment will be performed. 
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