
Improving Power Efficiency of D-NUCA Caches

A. Bardine, P. Foglia,
G. Gabrielli, C.A. Prete

Dip. di Ingegneria dell’Informazione
Facoltà di Ingegneria, Università di Pisa

Via Diotisalvi, 2 – 56126 PISA (Italy)
{alessandro.bardine, foglia,

giacomo.gabrielli, prete}@iet.unipi.it

P. Stenström
Dep. of Computer Science and Engineering

Chalmers University of Technology
S-412 96 Gothenburg (Sweden)

pers@ce.chalmers.se

Members of the HIPEAC EU Network of Excellence

Abstract

D-NUCA caches are cache memories that, thanks to
banked organization, broadcast search and
promotion/demotion mechanism, are able to tolerate
the increasing wire delay effects introduced by
technology scaling. As a consequence, they will
outperform conventional caches (UCA, Uniform Cache
Architectures) in future generation cores.

Due to the promotion/demotion mechanism, we
have found that, in a D-NUCA cache, the distribution
of hits on the ways varies across applications as well
as across different execution phases within a single
application. In this paper, we show how such a
behavior can be utilized to improve D-NUCA power
efficiency as well as to decrease its access latencies. In
particular, we propose a new D-NUCA structure,
called Way Adaptable D-NUCA cache, in which the
number of active (i.e. powered-on) ways is
dynamically adapted to the need of the running
application. Our initial evaluation shows that a
consistent reduction of both the average number of
active ways (42% in average) and the number of bank
access requests (29% in average) is achieved, without
significantly affecting the IPC.

1. Introduction

CMOS trends and bandwidth demands of cores are
leading to the use of large, on-chip, level-two (L2) and
level-three (L3) cache memories. For high clock
frequency designs, the latencies of such caches are
dominated by wire delays [1]. In order to reduce the
effects of such latencies, NUCA Caches (Non-Uniform

Cache Architectures) [2], [3] have been proposed as a
new paradigm for on-chip L2 cache memories.

NUCA caches. In a NUCA architecture, the cache
is partitioned into many independent banks while the
communication among banks and with the controller is
supported by a switched network. Such organizations
allow banks to be closer to the processor, hence
allowing shorter access latency to the local banks
compared to banks that are farther away. Mapping
between cache lines and physical banks can be either
Static or Dynamic (namely S-NUCA and D-NUCA)
[2]. In the former, each line can exclusively reside in a
single predetermined bank and the whole cache is used
like a direct mapped cache; in the latter (Figure 1),
each cache line is mapped to different banks as in a
traditional set associative cache, while the cache lines
can dynamically migrate from one bank to another. As
shown in Figure 1, in a D-NUCA cache the banks are
logically grouped in rows and columns, each bank
containing a fixed number of lines. The entire
addresses space is mapped on the banks belonging to
each row. Banks belonging to the same columns
behave like different ways of a set associative memory,
i.e. a cache line may reside in each bank of the column.
When a search is performed, the controller first
determines the column that can contain the searched
data using a direct mapping law, then it broadcasts the
request to all the banks belonging to such column. As
soon as a hit happens in one of the column banks, the
search is satisfied without the need of waiting for the
replies from the other, farther, column banks. To
reduce latencies, the “promotion/demotion”
mechanism is adopted: if a hit happens in a row that is
other than the first, the data line is promoted by
swapping it with the line that holds the same column

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. MEDEA '06, September 16-20, 2006 Seattle, WA, Copyright 2006 ACM 1-59593-568-1/06/09... $5.00

ACM SIGARCH Computer Architecture News 53 Vol. 35, No. 4, September 2007
Reprinted with permission of the ACM.

position in the next row closer to the controller. If a
miss happens, the new line is inserted in the farthest
bank (row 7 in Figure 1) evicting the corresponding
data line. As a consequence, the most recently
accessed lines are “promoted” in the banks closer to
the processor improving the performance. With such a
policy, D-NUCA caches succeed in achieving high hit
rates while keeping the access latencies low, in spite of
the wire-delay effects introduced by high clock rates
and technology scaling. These characteristics make D-
NUCA an attractive cache architecture for next
generation high performance CPUs, where large
storage capabilities, high clock rates and low access
latencies will be required.

Figure 1: The reference D-NUCA cache used in our work.
Such an 8-Mbyte D-NUCA cache uses 128 banks (the

squares in the picture) organized in rows and columns;
each row represents a way so that the cache behaves like

an 8-way set associative cache. The rounded corner
contours highlight a single row and a single column of

banks. The bold line shows the path followed by requests
for a search: from the address, the controller determines

the column to be searched (the 11th in the figure), a
request is sent along the horizontal link till the column,

then the request moves along the column. At each switch
(the black circles), the request is replicated to perform the

search in the bank.

Problem. As a consequence of the
promotion/demotion mechanism, we observed that in a
D-NUCA cache, the hits are not uniformly distributed
along the ways. Instead, their distribution shows strong
variations among different applications as well as
during different execution phases of the same
application. Such a behavior suggests that not all the
cache ways are needed during the whole execution of
an application: due to their poor usage, the unused or
less used ways may be powered-off without
significantly affecting performance. Accordingly, it
can be achieved a reduction of the cache static power
consumption that, according to technology projections
[5], will account for a greater fraction of the total chip
power consumption. Moreover, powering off some

ways may also be useful to reduce both the miss
detection time and the network traffic, as there are
fewer banks that must be searched in order to detect a
miss. This may have beneficial effects on performance
as well as on dynamic power consumption.

Contribution. In this work, we contribute with
Way Adaptable D-NUCA Caches that leverage our
observation on hit distribution across the ways. In such
a cache, a mechanism is introduced to dynamically
turn on or off ways, according to the needs of the
running application. In particular, our contribution can
be stated as follows: 1) we show that it is possible to
dynamically control the ways in a D-NUCA cache, and
it is promising, as it implies a reduction of the power
consumption, cache access time, and network traffic
with a negligible performance loss (42% in average of
reduction of active ways, 29% of reduction in bank
access requests, 3% of reduction in cache access
latency, with an average degradation of 0,38% for the
IPC); 2) we develop a scheme to control the number of
active ways in such a cache, that differs from proposed
techniques [12], as: a) it is the first to be applied to a
L2 D-NUCA cache, b) its metric is based on the
intrinsic D-NUCA data line ordering thus not requiring
the complex additional logic that previously utilized
LRU/MRU based metric needs, c) it uses such
ordering also to choose the way to be powered-off,
offering more guarantees of being performance
preserving than already experienced random choices.

2. Analysis of the Hits Distribution in a
D-NUCA Cache

As a consequence of the promotion mechanism,
during the execution of an application, in a D-NUCA
cache the hits are not uniformly distributed along the
ways. In fact, as also observed in [2], MRU data
migrate towards the controller, while LRU data
migrate to the opposite side. Particularly, we have
found that the distribution of hits along the ways varies
among different applications and also among different
execution phases of the same application.

We have conducted an analysis of the distribution of
cache hits in the set of SPEC2K applications listed in
Table 2. We now show illustrative results that clearly
demonstrate that applications have different
associativity needs in different execution phases.

Assuming the D-NUCA Cache of Figure 1, Figure
2 shows the distribution of cache hits to the different
ways for the SPEC2K applications Mcf and Twolf. For
both the applications, the number of hits decreases
when moving from Way0 to Way7. As expected, Mcf
hits are distributed across the cache. The distribution

ACM SIGARCH Computer Architecture News 54 Vol. 35, No. 4, September 2007

of hits in Twolf is however quite surprising: hits are
fully contained in the first two ways. Figure 3 shows
the hit distributions for Parser when executing 10
Millions of instructions starting from 3.709B and from
3.859B. In the first case the hits are concentrated to 4
ways while in the second case they are spread quite
uniformly across all the ways.

Figure 2: Distribution of cache hits across the reference D-
NUCA ways for the Mcf application, in the running phase
included between 5.08 and 5.09 billion of instructions and

for the Twolf application in the running phase included
between 581 and 591 million of instructions.

Figure 3: Hits distribution across the reference D-NUCA
ways when the application is Parser, in the running phase
included between 3.709 and 3.710 billion of instructions

and between 3.858 and 3.860 billion of instructions.

These results suggest that, although a highly
associative L2 D-NUCA cache can always contain the
working set of an application, there are many cases in
which the use of such a large cache is unnecessary and
it wastes space and power. On the other hand, the use
of caches with a limited associativity could be
unsuitable (i.e. generates too high miss rates and too
low IPC) for those applications whose working set
requires a high associativity (compare the two
distribution in Figure 2) while tuning the associativity
to one application would mean losing the flexibility
required by general-purpose cpus. Furthermore, both
the solutions don’t fully solve the problem because of
the different locality exhibited in different portions of
the execution of the same application as shown if we
compare the results in Figure 3.

Based on these considerations, we propose to adopt
a highly associative D-NUCA cache as a basic
architecture, and to introduce a mechanism that allows
to dynamically switch on and off the ways as a
function of the number of ways needed by the current
execution phase of the running application. We call
this structure “Way Adaptable D-NUCA Cache”.

3. Way Adaptable D-NUCA Cache

In a Way Adaptable D-NUCA Cache, each way can
be dynamically turned off or on during the execution
of an application, depending on the locality exhibited
by the current execution phase of the running
application. To decide when to turn on new ways and
when to shut down those that are unnecessary, a
prediction mechanism for the working set size is
needed. The one we utilize is described in Figure 4.

The hardware implementation of our prediction
mechanism is simple. Only two counters and the
combinatorial logic for the two steps of the algorithm
in Figure 4 are needed. As stated in [15], the impact of
similar logic on both the dynamic and the static power
consumption is negligible, when compared to a
moderately sized cache.

All the control logic is assumed to be embedded in
the cache controller, while the on/off switching of
ways is realized via the Gated-Vdd transistors
technology [9]. Such a technique has shown to be
particularly effective in reducing static power
consumption, especially for L2 caches [19].

Figure 4: Description of the algorithm we used to decide
when to switch on and off ways in a Way Adaptable D-

NUCA cache. Note that “farthest” and “closest” are
related to the position of the ways with respect to the

controller.

Table 1: Parameters of the simulated architecture
and of the prediction algorithm

Manufacturing Technology 70nm
Cpu Architecture Alpha 21264
L1 d-cache 64K, 2-way, 64 bytes blocks,

3 cycle hit latency, 1 port
L1 i-cache 64K, 2-way, 64 bytes blocks,

1 cycle hit latency, 1 port
L2 unified cache 8Mbyte, 8 ways
L2 NUCA organization 16 x 8 banks
L2 banks 64Kbytes, 64 bytes blocks,

3 cycle data access latency,
2 cycle tag access latency

L2 inter banks links Switched Network,
1 cycle latency per hop

Main memory latency 132 cycles
K 100000
T1 0.005
T2 0.02

Every K L2-cache hits do:
{
 D = Number of hits on the farthest powered-on
way / Number of hits on the first way;
 If (D < T1) then “shut down the farthest
powered-on way”;
 else if (D > T2) then “turn on the closest
powered-off way”;
 else “stay in current configuration”;
}

Twolf - 581M to 591M inst.

0

100

200

300

400

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

hi
ts

 c
ou

nt
 (x

10
00

)

Mcf - 5.08B to 5.09B inst.

0
100
200
300
400
500
600
700
800

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

hi
ts

 c
ou

nt
 (x

10
00

)

Parser - 3.709B to 3.710B inst.

0
20
40
60
80

100
120
140
160

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

hi
ts

 c
ou

nt
 (x

10
00

)

Parser - 3.859B to 3.860B inst.

0
20
40
60
80

100
120
140
160

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

hi
ts

 c
ou

nt
 (x

10
00

)

ACM SIGARCH Computer Architecture News 55 Vol. 35, No. 4, September 2007

Table 2: The benchmarks from the Spec2K suite used to
evaluate the Way Adaptable D-Nuca Cache

 Phase Phase
SPECINT200

0 FFWD RUN SPECFP2000 FFWD RUN

176.gcc 2.367B 300M 172.mgrid 550M 1.06B
181.mcf 5.0B 200M 177.mesa 570M 200M

197.parser 3.709B 200M 173.applu 267M 650M
253.perlbmk 5.0B 200M 179.art 267M 200M

256.bzip2 744M 1.0B 178.galgel 4.0B 200M
300.twolf 511M 200M 183.equake 4.459B 200M

4. Experimental Methodology

The evaluation of the proposed solution is
performed via execution driven simulation by
modifying the SimAlpha simulator [8]. We built an
extended version of the simulator that is able to make a
cycle accurate simulation (and provide related
statistics) of the memory and of the communication
network taking into account the packets propagation
over the links and throughout the switches, the
memory bank accesses and the conflicts in the use of
such elements.

We compare the performance of a Way Adaptable
D-NUCA Cache with the baseline D-NUCA cache by
measuring the IPC, the average number of active ways
(i.e. the average number of ways that are powered on
during the execution time of an application), the
average access latencies and the number of accesses to
the cache banks. For both the designs, the system
parameters and the numerical values for the parameters
K, T1 and T2 of the prediction algorithm used are
given in Table 1.

 Table 2 lists the benchmarks from the Spec2K suite
we used in the simulations. The system parameters and
the benchmarks together with their running conditions
are the same ones used in [2].

5. Results

Figure 5 shows the achieved IPC (Instructions Per
Cycle) and Figure 6 shows the average number of
active ways when using a plain D-NUCA and a Way
Adaptable D-NUCA to run the Spec2K applications
listed in Table 2.

The IPC of the Way Adaptable NUCA is close to
that of the reference Plain D-NUCA with a tiny 0,38%
performance loss in average (last bars in Figure 5). The
average number of active ways is considerably lower
in the Way Adaptable D-NUCA Cache and, with
respect to the baseline D-NUCA, it is reduced by 42%
(last bars in Figure 6). We don’t report an analytic

evaluation of the static power consumption reduction,
but the average number of turned off ways gives a
good metric for such reduction, as the static power
consumption strictly depends on leakage currents that
are directly comparable with the number of powered
on transistors and thus, in our case, with the number of
powered on ways.

IPC

0

0,5

1

1,5

2

2,5

applu art
bzip

2
equake

galgel
gcc mcf

mesa
mgrid

parser

perlbmk
twolf

average

plain D-NUCA way-adapting D-NUCA

Figure 5: The IPC (Instructions per Cycle) achieved by the
D-NUCA structures considered in our evaluation for the

various benchmarks and as average.

Avg. Number of Active Ways

0

1

2

3

4

5

6

7

8

applu art
bzip2

equake
galgel

gcc mcf
mesa

mgrid
parser

perlbmk
twolf

average

plain D-NUCA way-adapting D-NUCA

Figure 6: The average number of active ways for the D-
NUCA structures considered in our evaluation for the

various benchmarks and as average.

Table 3: Average Latencies and Bank Request Count for
Plain D-NUCA and for Way Adaptable D-Nuca

Plain D-NUCA Way Adaptable D-NUCA
Hit latency 13.34 cycles 13.13 cycles
Miss latency 23.11 cycles 15.99 cycles
Avg. lat. 14.14 cycles 13.68 cycles
Avg. Bank Requests 143.46 Millions 101.23 Millions

As one would expect, turning off one or more ways
also helps reducing the average cache latencies: one
can turn off the remotely located ways, so new data
enter the cache closer to the controller and they are
promoted to the faster ways after a lower number of
hits; in the same time a cache miss detection requires
the access to a fewer number of banks. Table 3 lists the
average latency values we measured for the Plain D-
NUCA in comparison with the Way Adaptable D-
NUCA cache. With respect to the Plain D-NUCA, we
obtain a 30% reduction in miss detection time and a
3.25% reduction in overall cache access time. For the
same reasons, the cache network traffic and related
power consumption are reduced: on each cache

ACM SIGARCH Computer Architecture News 56 Vol. 35, No. 4, September 2007

reference a fewer number of physical banks must be
accessed. Table 3 also reports the average number of
requests that are performed on the cache banks,
showing a 29% reduction of requests in the Way
Adaptable case.

6. Related Works

The D-NUCA cache architecture was proposed in
[2], [3], showing that a dynamic NUCA structure
achieves 1.5 times higher IPC than a traditional
Uniform Cache Architecture (UCA) when maintaining
the same size and manufacturing technology.
Extensions of the original idea are Nurapid [10] and
Triangular D-NUCA cache [11]. They improve
performance by decoupling tags from data or by
changing mapping and size of each way.

Many techniques have been proposed to
dynamically adapt the caches size to the working set
size [4]. Most techniques are focused on performances
and dynamic power saving and are not directly
applicable for reducing the static power consumptions.
As an example, in [13], [14], [15] the Selective Cache
Ways and similar techniques have been proposed.
They require an always powered on cache to reduce
miss rate and dynamic power consumption.

The techniques focusing on the reduction of static
power consumption rely on putting memory cells in a
low leakage mode either loosing or maintaining their
data contents. Examples of such techniques and related
circuital solutions are MTCMOS Caches [17], Drowsy
Caches [18], Decay Lines Caches [16], Slumberous
cache [20], and Way Adaptable Caches [12]. The last
work, in particular, introduces a technique to control
active ways in a conventional, associative L1 cache.
Such a technique adopts a LRU/MRU metric, so it
could be applied to D-NUCA only with more complex
hardware extensions than ours. Besides, it utilizes a
random policy to power-off ways, that we verified
being more performance affecting than powering off
the last ways. Adaptable D-NUCA Caches seem to be
very promising as, in addition to the power
consumption reduction, they reduce both network
traffic and the average cache latency, as showed in
section 5.

Finally, our work is related to the more general
framework of detecting program phases [6] to adapt at
runtime the number of active resources to the need of
the running program. A comparison of the
performances of both ideal and practical

implementations of such techniques may be found in
[21].

7. Conclusions

D-NUCA cache power efficiency can be enhanced
through the adoption of a control mechanism that
dynamically turns on and off the ways in dependency
of the need of the running application. Experimental
results have shown that, in a Way Adaptable D-NUCA
cache, the average number of active ways can be
reduced by 42%, on average, with respect to a
conventional D-NUCA without affecting the overall
IPC. Reducing the number of active ways contributes
also to reduce hit and miss cache latencies and the
network traffic. Future evolutions of this work will be
in multiple directions. An accurate tuning of the K, T1
and T2 parameters will be performed. Different
working set prediction algorithms will be investigated
together with the possibility of turning on/off more
ways in the same step. An accurate evaluation of the
actual power saving achieved with our proposed
technique will be conduced.

Acknowledgements

We wish to thank Massimo Macucci who furnished
us with the Alpha platform that we used to compile the
SPEC 2K benchmarks.

This works is partially supported by the SARC
project founded by European Union under the contract
no. 27648.

References

[1] V. Agarwal, M.S. Hrishikesh, S. Keckler. D. Burger.
Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures. Proc. 27th Int. Symp. on
Computer Architecture, pp.248-259, Vancouver, Canada,
June 2000
[2] C. Kim, D. Burger, S.W. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-
Chip Caches. Proc. 10th Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 211-
222, San Jose, CA, Oct. 2002.
[3] C. Kim, D. Burger, S.W. Keckler. Nonuniform cache
architectures for wire-delay dominated on-chip caches. IEEE
Micro, vol. 23(6), pp. 99-107, Nov./Dec., 2003
[4] V. Venkatachalam, M. Franz. Power Reduction
Techniques For Microprocessor Systems. ACM Computing
Surveys, vol. 37(3), pp. 195-237, Sept. 2005
[5] The International Technology roadmap for
Semiconductors. Semiconductor Industrial Association,
2005.

ACM SIGARCH Computer Architecture News 57 Vol. 35, No. 4, September 2007

[6] T. Sherwood, B. Calder. Time varying behavior of
programs. UC San Diego Technical Report UCSD-CS99-
630, 1999
[7] Standard Performance Evaluation Corporation
http://www.spec.org/
[8] R. Desikan et al., Sim-Alpha: A Validated Execution-
Driven Alpha2164 Simulator, tech report TR-01-23, Dept. of
Computer Sciences, Univ. Texas at Austin, 2001.
[9] M.Powell, S.Yangh, B.Falsafi, K.Roy, T.N.
Vijaykumar. Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories. Proc. 2000
Int. Symp. Low Power Electronics and Design, pp. 90-95,
Rapallo, Italy, July 2000.
[10] Z. Chisti, M.D. Powell, T.N. Vijaykumar. Distance
Associativity for High-Performance Energy-Efficient Non-
Uniform Cache Architectures. Proc..36th Int. Symp. on
Microarchitecture, pp.55-66, San Diego, CA, Dec. 2003
[11] P. Foglia, D. Mangano, C.A. Prete. A Cache Design for
High Performance Embedded Systems. Journal of Embedded
Computing, vol. 1(4), pp. 587-598, 2005
[12] H. Kobayashi, I.Kotera, H. Takizawa. Locality
Analysis to Control Dynamically Way-Adaptable Caches.
ACM SIGARCH Computer Architecture News, vol. 33(3),
pp. 25-32, June 2005
[13] D. H. Albonesi. Selective Cache Ways: On-Demand
Cache Resource Allocation. Proc. 32nd Int. Symp on
Microarchitecture, pp.248-259, Israel, November 1999
[14] R. Balasubramonian, et al: Memory hierarchy
reconfiguration for energy and performance in general
purpose processor architectures. Proc. 33rd Int. Symp. On
Microarchitecture, pp.245-257, Monterey, CA, Dec. 2000.

[15] D. Dropsho, et al. Integrating Adaptive On-Chip
Storage Structures for Reduced Dynamic Power. Proc. 2002
Int. Conf. on Parallel Architectures and Compilation
Techniques, pp.141-152, Charlottesville, CA, Sep.2002.
[16] Z. Hu, S. Kaxiras, M. Martonosi. Let caches decay:
reducing leakage energy via exploitation of cache
generational behavior. ACM Trans. on Computer Systems,
vol. 20(2), pp. 161-190, May 2002.
[17] H. Hanson, et al. Static energy reduction techniques for
microprocessor caches. IEEE Trans. on VLSI, vol. 11(3), pp.
303-313, June 2003
[18] K. Flautner, N.S.Kim, S.Martin D.Blaauw, T. Mudge.
Drowsy Caches: Simple Techniques for Reducing Leakage
Power. Proc. 29th Int. Symp. on Computer Architecture,
pp.148-157, Anchorage, AK, May 2002
[19] Y. Meng, T. Sherwood, Kastner. Exploring the limits
of leakage power reduction in caches. ACM Trans. on
Architectures and Code Optimization, vol. 2(3), pp.221-246,
Sep. 2005
[20] N. Mohyuddin, R. Bhatti, M. Dubois. Controlling
Leakage Power with the Replacement Policy in Slumberous
Cache. Proc. 2nd Conf. on Computing Frontiers, pp 161-170,
Ischia, Italy, May 2005.
[21] A. S. Dhodapkar, J. E. Smith. Comparing Program
Phase Detection Techniques. Proc. of the 36th Int. Symp. on
Microarchitecture, pp. 217-227, San Diego, CA, Dec. 2003.

ACM SIGARCH Computer Architecture News 58 Vol. 35, No. 4, September 2007

