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Abstract 

D-NUCA caches are cache memories that, thanks to 
banked organization, broadcast search and 
promotion/demotion mechanism, are able to tolerate 
the increasing wire delay effects introduced by 
technology scaling. As a consequence, they will 
outperform conventional caches (UCA, Uniform Cache 
Architectures) in future generation cores.  

Due to the promotion/demotion mechanism, we 
have found that, in a D-NUCA cache, the distribution 
of hits on the ways varies across applications as well 
as across different execution phases within a single 
application. In this paper, we show how such a 
behavior can be utilized to improve D-NUCA power 
efficiency as well as to decrease its access latencies. In 
particular, we propose a new D-NUCA structure, 
called Way Adaptable D-NUCA cache, in which the 
number of active (i.e. powered-on) ways is 
dynamically adapted to the need of the running 
application. Our initial evaluation shows that a 
consistent reduction of both the average number of 
active ways (42% in average) and the number of bank 
access requests (29% in average) is achieved, without 
significantly affecting the IPC.  

1. Introduction 

CMOS trends and bandwidth demands of cores are 
leading to the use of large, on-chip, level-two (L2) and 
level-three (L3) cache memories. For high clock 
frequency designs, the latencies of such caches are 
dominated by wire delays [1]. In order to reduce the 
effects of such latencies, NUCA Caches (Non-Uniform 

Cache Architectures) [2], [3] have been proposed as a 
new paradigm for on-chip L2 cache memories.  

NUCA caches. In a NUCA architecture, the cache 
is partitioned into many independent banks while the 
communication among banks and with the controller is 
supported by a switched network. Such organizations 
allow banks to be closer to the processor, hence 
allowing shorter access latency to the local banks 
compared to banks that are farther away. Mapping 
between cache lines and physical banks can be either 
Static or Dynamic (namely S-NUCA and D-NUCA) 
[2]. In the former, each line can exclusively reside in a 
single predetermined bank and the whole cache is used 
like a direct mapped cache; in the latter (Figure 1), 
each cache line is mapped to different banks as in a 
traditional set associative cache, while the cache lines 
can dynamically migrate from one bank to another. As 
shown in Figure 1, in a D-NUCA cache the banks are 
logically grouped in rows and columns, each bank 
containing a fixed number of lines. The entire 
addresses space is mapped on the banks belonging to 
each row. Banks belonging to the same columns 
behave like different ways of a set associative memory, 
i.e. a cache line may reside in each bank of the column. 
When a search is performed, the controller first 
determines the column that can contain the searched 
data using a direct mapping law, then it broadcasts the 
request to all the banks belonging to such column. As 
soon as a hit happens in one of the column banks, the 
search is satisfied without the need of waiting for the 
replies from the other, farther, column banks. To 
reduce latencies, the “promotion/demotion” 
mechanism is adopted: if a hit happens in a row that is 
other than the first, the data line is promoted by 
swapping it with the line that holds the same column 
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position in the next row closer to the controller. If a 
miss happens, the new line is inserted in the farthest 
bank (row 7 in Figure 1) evicting the corresponding 
data line. As a consequence, the most recently 
accessed lines are “promoted” in the banks closer to 
the processor improving the performance. With such a 
policy, D-NUCA caches succeed in achieving high hit 
rates while keeping the access latencies low, in spite of 
the wire-delay effects introduced by high clock rates 
and technology scaling. These characteristics make D-
NUCA an attractive cache architecture for next 
generation high performance CPUs, where large 
storage capabilities, high clock rates and low access 
latencies will be required. 

Figure 1: The reference D-NUCA cache used in our work. 
Such an 8-Mbyte  D-NUCA cache uses 128 banks (the 

squares in the picture) organized in rows and columns; 
each row represents a way so that the cache behaves like 

an 8-way set associative cache. The rounded corner 
contours highlight a single row and a single column of 

banks. The bold line shows the path followed by requests 
for a search: from the address, the controller determines 

the column to be searched (the 11th in the figure), a 
request is sent along the horizontal link till the column, 

then the request moves along the column. At each switch 
(the black circles), the request is replicated to perform the 

search in the bank.

Problem. As a consequence of the 
promotion/demotion mechanism, we observed that in a 
D-NUCA cache, the hits are not uniformly distributed 
along the ways. Instead, their distribution shows strong 
variations among different applications as well as 
during different execution phases of the same 
application. Such a behavior suggests that not all the 
cache ways are needed during the whole execution of 
an application: due to their poor usage, the unused or 
less used ways may be powered-off without 
significantly affecting performance. Accordingly, it 
can be achieved a reduction of the cache static power 
consumption that, according to technology projections 
[5], will account for a greater fraction of the total chip 
power consumption. Moreover, powering off some 

ways may also be useful to reduce both the miss 
detection time and the network traffic, as there are 
fewer banks that must be searched in order to detect a 
miss. This may have beneficial effects on performance 
as well as on dynamic power consumption. 

Contribution. In this work, we contribute with 
Way Adaptable D-NUCA Caches that leverage our 
observation on hit distribution across the ways. In such 
a cache, a mechanism is introduced to dynamically 
turn on or off ways, according to the needs of the 
running application. In particular, our contribution can 
be stated as follows: 1) we show that it is possible to 
dynamically control the ways in a D-NUCA cache, and 
it is promising, as it implies a reduction of the power 
consumption, cache access time, and network traffic 
with a negligible performance loss (42% in average of 
reduction of active ways, 29% of reduction in bank 
access requests, 3% of reduction in cache access 
latency, with an average degradation of 0,38% for the 
IPC); 2) we develop a scheme to control the number of 
active ways in such a cache, that differs from proposed 
techniques [12], as: a) it is the first to be applied to a 
L2 D-NUCA cache, b) its metric is based on the 
intrinsic D-NUCA data line ordering thus not requiring 
the complex additional logic that previously utilized 
LRU/MRU based metric needs, c) it uses such 
ordering also to choose the way to be powered-off, 
offering more guarantees of being performance 
preserving than already experienced random choices. 

2. Analysis of the Hits Distribution in a 
D-NUCA Cache 

As a consequence of the promotion mechanism, 
during the execution of an application, in a D-NUCA 
cache the hits are not uniformly distributed along the 
ways. In fact, as also observed in [2], MRU data 
migrate towards the controller, while LRU data 
migrate to the opposite side. Particularly, we have 
found that the distribution of hits along the ways varies 
among different applications and also among different 
execution phases of the same application.  

We have conducted an analysis of the distribution of 
cache hits in the set of SPEC2K applications listed in 
Table 2. We now show illustrative results that clearly 
demonstrate that applications have different 
associativity needs in different execution phases. 

Assuming the D-NUCA Cache of Figure 1, Figure 
2 shows the distribution of cache hits to the different 
ways for the SPEC2K applications Mcf and Twolf. For 
both the applications, the number of hits decreases 
when moving from Way0 to Way7. As expected, Mcf 
hits are distributed across the cache. The distribution 
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of hits in Twolf is however quite surprising: hits are 
fully contained in the first two ways. Figure 3 shows 
the hit distributions for Parser when executing 10 
Millions of instructions starting from 3.709B and from 
3.859B. In the first case the hits are concentrated to 4 
ways while in the second case they are spread quite 
uniformly across all the ways. 

Figure 2: Distribution of cache hits across the reference D-
NUCA ways for the  Mcf application, in the running phase 
included between 5.08 and 5.09 billion of instructions and 

for the Twolf application in the running phase included 
between 581 and 591 million of instructions. 

Figure 3: Hits distribution across the reference D-NUCA 
ways when the application is Parser, in the running phase 
included between 3.709 and 3.710 billion of instructions 

and between 3.858 and 3.860 billion of instructions. 

These results suggest that, although a highly 
associative L2 D-NUCA cache can always contain the 
working set of an application, there are many cases in 
which the use of such a large cache is unnecessary and 
it wastes space and power. On the other hand, the use 
of caches with a limited associativity could be 
unsuitable (i.e. generates too high miss rates and too 
low IPC) for those applications whose working set 
requires a high associativity (compare the two 
distribution in Figure 2) while tuning the associativity 
to one application would mean losing the flexibility 
required by general-purpose cpus. Furthermore, both 
the solutions don’t fully solve the problem because of 
the different locality exhibited in different portions of 
the execution of the same application as shown if we 
compare the results in Figure 3. 

Based on these considerations, we propose to adopt 
a highly associative D-NUCA cache as a basic 
architecture, and to introduce a mechanism that allows 
to dynamically switch on and off the ways as a 
function of the number of ways needed by the current 
execution phase of the running application. We call 
this structure “Way Adaptable D-NUCA Cache”. 

3. Way Adaptable D-NUCA Cache 

In a Way Adaptable D-NUCA Cache, each way can 
be dynamically turned off or on during the execution 
of an application, depending on the locality exhibited 
by the current execution phase of the running 
application. To decide when to turn on new ways and 
when to shut down those that are unnecessary, a 
prediction mechanism for the working set size is 
needed. The one we utilize is described in Figure 4.  

The hardware implementation of our prediction 
mechanism is simple. Only two counters and the 
combinatorial logic for the two steps of the algorithm 
in Figure 4 are needed. As stated in [15], the impact of 
similar logic on both the dynamic and the static power 
consumption is negligible, when compared to a 
moderately sized cache. 

All the control logic is assumed to be embedded in 
the cache controller, while the on/off switching of 
ways is realized via the Gated-Vdd transistors 
technology [9]. Such a technique has shown to be 
particularly effective in reducing static power 
consumption, especially for L2 caches [19]. 

Figure 4: Description of the algorithm we used to decide 
when to switch on and off ways in a Way Adaptable D-

NUCA cache. Note that “farthest” and “closest” are 
related to the position of the ways with respect to the 

controller. 

Table 1: Parameters of the simulated architecture 
and of the prediction algorithm 

Manufacturing Technology 70nm 
Cpu Architecture Alpha 21264 
L1 d-cache 64K, 2-way, 64 bytes blocks, 

3 cycle hit latency, 1 port 
L1 i-cache 64K, 2-way, 64 bytes blocks, 

1 cycle hit latency, 1 port 
L2 unified cache 8Mbyte, 8 ways 
L2 NUCA organization 16 x 8 banks 
L2 banks 64Kbytes, 64 bytes blocks, 

3 cycle data access latency, 
2 cycle tag access latency 

L2 inter banks links Switched Network, 
1 cycle latency per hop 

Main memory latency 132 cycles 
K 100000 
T1 0.005 
T2 0.02 

Every K L2-cache hits do: 
{
 D = Number of hits on the farthest powered-on 
way / Number of hits on the first way; 
 If (D < T1) then “shut down the farthest 
powered-on way”; 
 else if (D > T2) then “turn on the closest 
powered-off way”; 
 else “stay in current configuration”; 
}
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Table 2: The benchmarks from the Spec2K suite used to 
evaluate the Way Adaptable D-Nuca Cache 

 Phase  Phase 
SPECINT200

0 FFWD RUN SPECFP2000 FFWD RUN 

176.gcc 2.367B 300M 172.mgrid 550M 1.06B 
181.mcf 5.0B 200M 177.mesa  570M  200M  

197.parser 3.709B 200M 173.applu 267M 650M 
253.perlbmk 5.0B 200M 179.art 267M 200M 

256.bzip2 744M 1.0B 178.galgel 4.0B 200M 
300.twolf 511M 200M 183.equake 4.459B 200M 

4. Experimental Methodology  

The evaluation of the proposed solution is 
performed via execution driven simulation by 
modifying the SimAlpha simulator [8]. We built an 
extended version of the simulator that is able to make a 
cycle accurate simulation (and provide related 
statistics) of the memory and of the communication 
network taking into account the packets propagation 
over the links and throughout the switches, the 
memory bank accesses and the conflicts in the use of 
such elements.  

We compare the performance of a Way Adaptable 
D-NUCA Cache with the baseline D-NUCA cache by 
measuring the IPC, the average number of active ways 
(i.e. the average number of ways that are powered on 
during the execution time of an application), the 
average access latencies and the number of accesses to 
the cache banks. For both the designs, the system 
parameters and the numerical values for the parameters 
K, T1 and T2 of the prediction algorithm used are 
given in Table 1.  

 Table 2 lists the benchmarks from the Spec2K suite 
we used in the simulations. The system parameters and 
the benchmarks together with their running conditions 
are the same ones used in [2]. 

5. Results 

Figure 5 shows the achieved IPC (Instructions Per 
Cycle) and Figure 6 shows the average number of 
active ways when using a plain D-NUCA and a Way 
Adaptable D-NUCA to run the Spec2K applications 
listed in Table 2.  

The IPC of the Way Adaptable NUCA is close to 
that of the reference Plain D-NUCA with a tiny 0,38% 
performance loss in average (last bars in Figure 5). The 
average number of active ways is considerably lower 
in the Way Adaptable D-NUCA Cache and, with 
respect to the baseline D-NUCA, it is reduced by 42% 
(last bars in Figure 6). We don’t report an analytic 

evaluation of the static power consumption reduction, 
but the average number of turned off ways gives a 
good metric for such reduction, as the static power 
consumption strictly depends on leakage currents that 
are directly comparable with the number of powered 
on transistors and thus, in our case, with the number of 
powered on ways. 
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Figure 5: The IPC (Instructions per Cycle) achieved by the 
D-NUCA structures considered in our evaluation for the 

various benchmarks and as average. 
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Figure 6: The average number of active ways for the D-
NUCA structures considered in our evaluation for the 

various benchmarks and as average. 

Table 3: Average  Latencies and Bank Request Count for 
Plain D-NUCA and for Way Adaptable D-Nuca 

Plain D-NUCA Way Adaptable D-NUCA 
Hit latency 13.34 cycles 13.13 cycles 
Miss latency 23.11 cycles 15.99 cycles 
Avg. lat. 14.14 cycles 13.68 cycles 
Avg. Bank Requests  143.46 Millions 101.23 Millions 

As one would expect, turning off one or more ways 
also helps reducing the average cache latencies: one 
can turn off the remotely located ways, so new data 
enter the cache closer to the controller and they are 
promoted to the faster ways after a lower number of 
hits; in the same time a cache miss detection requires 
the access to a fewer number of banks. Table 3 lists the 
average latency values we measured for the Plain D-
NUCA in comparison with the Way Adaptable D-
NUCA cache. With respect to the Plain D-NUCA, we 
obtain a 30% reduction in miss detection time and a 
3.25% reduction in overall cache access time. For the 
same reasons, the cache network traffic and related 
power consumption are reduced: on each cache 

ACM SIGARCH Computer Architecture News 56 Vol. 35, No. 4, September 2007



reference a fewer number of physical banks must be 
accessed. Table 3 also reports the average number of 
requests that are performed on the cache banks, 
showing a 29% reduction of requests in the Way 
Adaptable case. 

6. Related Works 

The D-NUCA cache architecture was proposed in 
[2], [3], showing that a dynamic NUCA structure 
achieves 1.5 times higher IPC than a traditional 
Uniform Cache Architecture (UCA) when maintaining 
the same size and manufacturing technology. 
Extensions of the original idea are Nurapid [10] and 
Triangular D-NUCA cache [11]. They improve 
performance by decoupling tags from data or by 
changing mapping and size of each way. 

Many techniques have been proposed to 
dynamically adapt the caches size to the working set 
size [4]. Most techniques are focused on performances 
and dynamic power saving and are not directly 
applicable for reducing the static power consumptions. 
As an example, in [13], [14], [15] the Selective Cache 
Ways and similar techniques have been proposed. 
They require an always powered on cache to reduce 
miss rate and dynamic power consumption.  

The techniques focusing on the reduction of static 
power consumption rely on putting memory cells in a 
low leakage mode either loosing or maintaining their 
data contents. Examples of such techniques and related 
circuital solutions are MTCMOS Caches [17], Drowsy 
Caches [18], Decay Lines Caches [16], Slumberous 
cache [20], and Way Adaptable Caches [12]. The last 
work, in particular, introduces a technique to control 
active ways in a conventional, associative L1 cache. 
Such a technique adopts a LRU/MRU metric, so it 
could be applied to D-NUCA only with more complex 
hardware extensions than ours. Besides, it utilizes a 
random policy to power-off ways, that we verified 
being more performance affecting than powering off 
the last ways. Adaptable D-NUCA Caches seem to be 
very promising as, in addition to the power 
consumption reduction, they reduce both network 
traffic and the average cache latency, as showed in 
section 5.  

Finally, our work is related to the more general 
framework of detecting program phases [6] to adapt at 
runtime the number of active resources to the need of 
the running program. A comparison of the 
performances of both ideal and practical 

implementations of such techniques may be found in 
[21]. 

7. Conclusions 

D-NUCA cache power efficiency can be enhanced 
through the adoption of a control mechanism that 
dynamically turns on and off the ways in dependency 
of the need of the running application. Experimental 
results have shown that, in a Way Adaptable D-NUCA 
cache, the average number of active ways can be 
reduced by 42%, on average, with respect to a 
conventional D-NUCA without affecting the overall 
IPC. Reducing the number of active ways contributes 
also to reduce hit and miss cache latencies and the 
network traffic. Future evolutions of this work will be 
in multiple directions. An accurate tuning of the K, T1
and T2 parameters will be performed. Different 
working set prediction algorithms will be investigated 
together with the possibility of turning on/off more 
ways in the same step. An accurate evaluation of the 
actual power saving achieved with our proposed 
technique will be conduced. 
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