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Abstract 

Future embedded applications will require high 

performance processors integrating fast and low-power 

cache. Dynamic Non-Uniform Cache Architectures (D-

NUCA) have been proposed to overcome the performance 

limit introduced by wire delays when designing large cache. 

In this paper, we propose alternative designs of D-NUCA 

cache, namely Triangular D-Nuca Cache, to reduce power 

consumption and silicon area occupancy of D-Nuca cache. 

We compare the performances of Triangular D-NUCA 

cache with conventional rectangular organization. Results 

show that our approach is particular useful in the embedded 

applications domain, as it permits the utilization of half-

sized NUCA cache with performance improvements.  

1. Introduction 

Future mobile embedded environments need to support 

sophisticated applications such as speech recognition, visual 

feature recognition, secure wireless networking, and general 

media processing. These applications are computation 

intensive, and require more performance than the one 

current embedded processor can deliver [16], [17]. 

Traditional ways to increase performances of embedded 

processors include technology scaling (with the consequent 

performance increase due to the Moore's law) [17], and the 

tuning of cache hierarchy parameters [18]. Both the 

techniques will be no more applicable to the design of such 

family of processors, due to the wire delay problem and the 

power requirement of embedded hand-held applications. 

Traditional cache tuning and technology scaling techniques 

determine increased chip power consumption [17], [18], 

increased chip area devoted to the memory subsystem [14], 

[15], and an increased wire delay (also due to the increased 

memory area) , which, in turn, limits the overall processor 

performances [1]. As a consequence, new design techniques 

for processor architecture and memory hierarchy are 

required.  

Focusing the attention on the memory subsystem, the 

NUCA (Non Uniform Cache Architecture) Caches [7, 8] 

have been recently proposed to overcome the bottleneck due 

to growing wire delays in general purpose systems. NUCA 

caches are large L2 caches, organized in sub-bank. Each 

sub-bank can be accessed independently, with an access 

time depending on its physical distance from the cache 

controller (it is the only delay that must be paid for 

accessing the particular bank), thus achieving non uniform 

access time. 

In this paper we present an alternative design of D-

NUCA cache, targeting the minimization of both silicon area 

and power consumption. Because of the geometric shape, we 

named our proposal Triangular Dynamic NUCA (TD-

NUCA). Basically, TD-NUCA caches are D-NUCA caches 

with a variable number of banks when moving in the 

opposite direction of the controller. In particular, we deal 

with two organizations, increasing and decreasing TD-

NUCA. The results of our investigation show that, in the 

general purpose case, TD-NUCA design enables to reduce 

the silicon area by approximately 50%, while paying some 

performance degradation. In the cases typical of embedded 

applications (where the application is known in advance), 

TD-NUCA cache permits a silicon area reduction of 

approximately 50%, while outperforming the solutions 

based on DNUCA cache. Our research highlights that more 

studies on the mapping policies and geometry are 

worthwhile, as we have explored only few directions (i.e. 

reducing the number of block and adopting fixed mapping 

policy) in a wide design space, nevertheless achieving 

promising results. 

2. Rationale of TD-NUCA caches 

In the NUCA architecture proposed in [7], [8], the L2 

cache is organized in banks, which define a rectangular 

memory geometry. Each bank may be accessed 

independently, with an access time depending on the 

physical location of the bank. An interconnection 

infrastructure, based on switch (in the simpler design), on a 

wormhole routed 2-D mesh with point-to-point links, or, 

better, on a more general Network on Chip [23], [24], [25] is 

utilized to guarantee the bank-controller communications. 

The design space of NUCA cache is very large: a Mapping 

Policy defines the number of addressable banks and how 

memory lines are mapped to this bank; a Search Policy 

defines the set of possible locations for a line; a Movement 

Policy defines the way in which a line is moved, either 
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while resident in the cache or across different lifetimes in 

the cache. Many of these policies have been explored in 

[7,8]; results show that DNUCA cache achieves 1.5 times 

the IPC of a traditional Uniform Cache Architecture (UCA) 

of any size 

A typical distribution of the bank accesses in a 

rectangular D-NUCA cache, when adopting the most 

performing policies ([7], [8]), is showed in Figure 1. Such a 

distribution is a consequence of the best migration 

mechanism [2], which implies that the most accessed data 

migrate near the controller, while less used data move 

toward the opposite side and possibly are evicted from the 

cache. The exact shape of accesses distribution depends on 

several issues (i.e. the application, the mapping policy, the 

migration policy, etc.), but it has a qualitative distribution as 

the one shown in Figure 1.  

C

Figure 1: Qualitative accesses distribution in a D-
NUCA cache. Due to the migration policy, the most 

accessed banks are within the darker area. 

By analyzing the accesses distribution of Figure 1, our 

idea is to modify the original D-NUCA design, by 

eliminating from the cache the banks related to the less used 

data, i.e. by implementing a cache with a decreasing number 

of entries within a way, when moving in the opposite 

direction of the controller. In this way, we could be able to 

reduce the cache size, and consequently the cache area, with 

low performance degradation. By eliminating banks, we can 

also reduce the static power consumption. This is an 

important issue in the design of embedded system, as cache 

memory may consume up to 50% of total chip power, while 

static energy dissipation is going to account for an 

increasing portion of total energy in current and future 

technologies [19], [20]. 

CC

Figure 2: Increasing and decreasing TD-NUCA 
organizations. 

The above idea leads to a triangular organization, i.e. a 

Triangular D-NUCA (TD-NUCA) memory and  we consider 

the two organizations showed in Figure 2. According to the 

accesses distribution, the decreasing solution should meet 

lower miss rate than the increasing solution. On the other 

hand, by using specific technique [11], the increasing 

organization could allow a higher power consumption 

reduction. In fact, power consumption includes static and 

dynamic terms. The dynamic term could be reduced by using 

transistors with different threshold voltages: transistors 

located on most used banks are high-power and faster, 

whereas the transistors located in the further banks are low-

power but slower [11]. 

3. D-NUCA caches and related works 

Although significant prior work has evaluated large 

cache design [5, 4], the D-NUCA cache architecture has 

been proposed in [7, 8], showing that a dynamic NUCA 

design achieves 1.5 times the IPC of a traditional Uniform 

Cache Architecture (UCA) of any size. In order to evaluate 

the effects of the different organizations on system 

performance, the author developed an experimental 

methodology based on Cacti [12] to derive the physical 

model of cache memory, and an extended version of the sim-

alpha simulator [3] to simulate the different organizations 

with parameters derived from Cacti. In a more recent work 

[9], a fully-associative approach for NUCA memory has 

been proposed. In this case, a Globally Asynchronous 

Locally Synchronous (GALS) Network on Chip (NoC) is 

employed as communication infrastructure, according to the 

switched-network paradigm. D-NUCA memories have been 

also analyzed in the contest of on chip multiprocessor as 

shared level-two caches [2]. In such a work commercial and 

scientific benchmarks have been employed, and the results 

show that migration mechanism are less effective for CMPs 

because 40-60% of L2 cache hits in commercial workloads 

are satisfied in the central banks, which are equally far from 

each processor. An approach for reducing the power 

consumption in NUCA cache memories has been proposed 

in [11]. In such a proposal the key idea is to allow the ways 

within a cache to be accessed at different speeds and to 

place infrequently accessed data into the slow ways. 

A lot of works have been done on the design of low 

power cache in embedded systems. These studies are 

consequence of the importance of the cache on processor 

performances, and the increased power consumption (both 

static and dynamic) of the memory subsystem [19], [20].  

An important trend in the design of low power, high 

performance hardware consists in the partitioning of 

hardware components in smaller and less energy-consuming 

units [26]. This trend has been utilized in both the design of 

processor internal architectures [27] and cache memories 

[12]. Following such approach, Kim et al. [26] proposed 

sub-cache to reduce power consumption of L1 instruction 

cache in embedded system. In sub-cache architecture, a 

cache is split into several smaller units, each of which is a 
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cache by itself. Another approach to reduce power 

consumption consists in adding a small instruction cache 

(tiny cache). It has been proposed by Jouppi [29], in the 

field of general purpose system, and it has been applied to 

the design of instruction cache for embedded systems [28]. 

Similarly, filter cache has been utilized to minimize energy 

consumption of instruction cache [30]: the idea is that if 

most of a program’s time is spent in loop, then most hits 

occur in the filter cache. 

All these papers address the problem of reducing cache 

memories power consumption in embedded systems. Like 

our work, most of these solutions utilize sub-banking or 

similar issues (little cache and/or sub-cache), but they not 

deal with the wire delay problem, so, differently from our 

work, they will be no more applicable to the design of future 

high performance, low power embedded processor.  

Other techniques have been developed, but in most 

cases, they incur in additional latencies, so they are not 

useful for the design of high performance embedded system. 

With the delayed access [26], [31], the reduction of power 

consumption is achieved by activating only the cache bank 

that will be accessed: the access to data array is delayed 

until the access to the tag array indicates the right way. 

Other schemas try to predict the way which is accessed [32], 

or try to change the number of ways activated depending on 

the application behaviors [33]. 

Also configurable cache architectures have been studied. 

The first proposals deal with performance, while more 

recent works consider also power consumption. 

Ranganathan et al. [35] proposed configurable cache 

architecture for general purpose processors. When used in 

media applications, a large cache may not give benefits due 

to the data characteristics of media applications. In this case, 

the authors propose of dynamically reconfigure part of the 

cache, to be used for other processor activities, such as 

instruction reuse. Kim et al. [36] proposed a multifunction 

cache architecture, which partitions the cache into a 

dedicated cache and a configurable cache. The configurable 

part can be used to implement computations, for example, 

FIR and DCT/IDCT, which takes advantage of on-chip 

resources when an application does not need the whole 

cache.  

Zhang et al., propose specific hardware on-chip 

implementing cache tuning heuristic, with the aims of 

reducing power consumptions in embedded processors [20]. 

They propose also [34] a reconfigurable cache architecture, 

in which cache size (by shutting up or down ways), line size 

and associativity (via way concatenations) may be tuned to 

the application needs. Way shutdown cache methods have 

been proposed independently by Albonesi [37] and by the 

designers of the Motorola M*CORE processor [38]. In those 

approaches, a designer would initially profile a program to 

determine how many ways could be shut down without 

causing too much performance degradation. Albonesi also 

discusses dynamic way shutdown and activation for different 

regions of a program. As NUCA and TDNUCA cache are 

highly reconfigurable, we plan to extend our work on TD-

NUCA by evaluating reconfigurable techniques. In 

particular, we can consider a TD-NUCA cache as a NUCA 

cache obtained by applying way shutdown techniques. 

Besides, both the design introduces another dimension in 

the design space: due to the NOC infrastructure, also the 

mapping and searching algorithm can be dynamically 

changed. In our paper, we want to explore the potential 

benefits of applying such techniques. In another work we 

plan to explore the feasibility and the cost of implementing 

reconfigurable techniques in D-NUCA caches. 

4. Design of TD-NUCA caches 

In order to completely define the TD-NUCA model, 

besides the size and the numbers of blocks, the definition of 

the mapping, search, movement and replacement policies is 

needed. We evaluated different solutions, and we report in 

this paper only the meaningfully results. We mainly refer to 

the increasing TD-NUCA organization in order to present 

our proposal, but the whole work can easily be extended to 

the decreasing solution. 

Figure 3: Comparison between D-NUCA and TD-
NUCA memories. 

With respect to the mapping policy, we adopt a spread-

sets approach for the TD-NUCA organization. Differently 

from the original proposal [7], [8], in our case all of the 

bank sets share some banks in a similar way to the shared 

mapping proposed for rectangular D-NUCA caches. The 

figure 3 shows the comparison between four-way D-NUCA 

and four-way increasing TD-NUCA memories. The numbers 

superimposed on the cache banks show the hops (and the 

delays) needed to communicate with the controller. 

Similarly to the mapping policies proposed in prior work, 

for TD-NUCA designs we adopt the simple mapping and 

fair mapping policies. The two different mapping policies 

are shown in the figure 4. In the simple mapping policy, a 

cache line of a generic bank can be mapped in the next way 

into two different banks1. The main drawback of this 

solution is that some memory addresses can be mapped only 

into the banks with high delay, whereas other memory 

addresses can be mapped only into banks with low delay. In 

the fair mapping policy, the two possible destinations for 

                                                       
1The sets are defined by all of the possible paths shown in figure, i.e. 

those that lead from the controller to the banks on the end column.  
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each cache line have the same delay, so that the average 

access times across all paths are equalized2.  

We evaluated and adapted the incremental and multicast 

search policies. In the incremental search, the banks are 

searched in order starting from the closest bank until the 

requested line is found or a miss occurs in the last bank. 

According to this technique, a request is routed toward the 

first bank of the set, where, if no hit occurs, the request is 

routed through the shortest path toward the next bank of the 

set. This is repeated until a hit or a miss occurs. 

Unfortunately, this solution is effective only for the simple 

mapping. In fact, using the incremental search in 

conjunction with the fair mapping policy, in some cases the 

requests have to follow longer paths than the shortest ones, 

and the average access time to the banks is worse than the 

one in the rectangular D-NUCA. In order to overcome such a 

limitation, our final choice is to use the multicast search 

technique. In this case, all of the requests are routed in a 

middle channel from where they proceed in parallel across 

both the columns and the rows. Figure 5 shows an example 

of path followed by a request in both the search techniques, 

in the case of fair mapping policy. 

Figure 4: The two different mapping policies. 

Figure 5: Example of access with both incremental 
search and multicast search. 

With respect to movement policy, we employ the 

generation promotion technique proposed for rectangular D-

                                                       
2 Also for this solution the sets are defined by all of the possible paths 

that lead from the controller to the banks on the end column. 

NUCA caches. For the replacement policy, we consider two 

of the possible strategies proposed in the prior work, tail 

insertion in conjunction to a zero-copy policy and random 

insertion in conjunction to a one-copy policy. 

5. Results 
In order to evaluate our proposals, we use the same 

experimental methodology and some of the benchmarks 

proposed in [7, 8]. The SPECINT2000 benchmarks used for 

performance evaluation and the related parameters are listed 

in table 1. The parameters FFWD and RUN are respectively 

the number of instructions skipped to reach the phase start 

and the number of instructions simulated. Table 1 also lists 

the number of L2 accesses per 1 million instructions 

assuming 64KB level-1 instruction and data caches [6]. As 

done in the previous work, we assume a constant L2 cache 

area and vary the technology generation to scale cache 

capacity within that area, according to the SIA Roadmap 

[13] predictions. We analyze the same cases and use the 

same performance parameters (i.e. IPC and Miss Rate) of 

the work [7, 8], to get comparable results. 

Table 1: Benchmarks used for performance 
evaluation. 

Phase 
SPECINT2000

RUN FFWD 

L2 load acc/ 

Million Instr.

gcc 2,367B 300M 25.900 

mcf 5B 200M 260.620 

bzip2 744B 1B 9.300 

twolf 511B 200M 22.500 

We modified the extended sim-alpha simulator for 

supporting our TD-NUCA organization. In order to perform 

a meaningful comparison and validate the changes to the 

simulator, we repeated the simulations also for rectangular 

D-NUCA caches. The results that we obtained show that our 

TD-NUCA simulator is coherent to the previous D-NUCA 

simulator. 
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Figure 6: IPC of rectangular D-NUCA and TD-NUCA 
caches. 

Our preliminary investigation uses a baseline 

configuration. Such a configuration uses fair mapping, 

multicast search, single bank promotion upon each hit and 

tail insertion. We explored different memory sizes, i.e. 

1MB, 2MB, 4MB and 8MB comparing the results 

respectively with 16MB, 8MB, 4MB and 2MB rectangular 

D-NUCA caches. Figure 6 and Figure 7 summarize the 

simulation results obtained by averaging the different results 
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of all benchmarks. In particular, these figures show 

respectively the IPC and the miss rate for 2MB, 4MB, 8MB 

and 16MB D-NUCA caches and for the equivalent 

increasing and decreasing TD-NUCA caches (i.e. for 1MB, 

2MB, 4MB and 8MB sizes).  

The smallest gap between the IPCs (i.e. the best case) is 

achieved with 16MB D-NUCA and 8MB TD-NUCAs (i.e. 

16-8-8 configuration). As in the previous work, the 16MB 

rectangular organization has 16x16 banks, whereas the 8MB 

TD-NUCAs have each four columns by two banks, four 

columns by four banks, four columns by eight banks and 

four columns by sixteen banks. First, we observe that the 

increasing solution has a lower IPC than the decreasing one. 

Since the miss rate is very low in both cases, such a result is 

due to the different average access times. The IPC of the 

decreasing cache is approximately that of the rectangular D-

NUCA, whereas the increasing cache reduces the IPC by 

approximately 9%.  
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Figure 7: Miss-rate of rectangular D-NUCA and TD-
NUCA caches. 

The greatest gap between the IPCs (i.e. the worst case) is 

achieved with 8MB D-NUCA and 4MB TD-NUCAs (i.e. 8-

4-4 configuration). In such case, the rectangular organization 

has 16x8 banks, whereas the TD-NUCAs have each two 

columns by two banks, two columns by four banks, two 

columns by eight banks and two columns by sixteen banks. 

Also the decreasing cache introduces performance 

degradation reducing the IPC by approximately 16% with 

respect to the rectangular cache. However, the performances 

of the decreasing cache are higher than increasing one.The 

figures show that increasing caches are better than 

decreasing ones. Moreover, TD-NUCA caches have 

approximately the same IPC of D-NUCA caches with the 

same sizes. 

The figures 8, 9, 10 and 11, present the comparison 

between the IPC of rectangular D-NUCA and TD-NUCA 

caches respectively for gcc, mcf, bzip2 and twolf 

benchmarks. These figures show that, in some cases, the 

increasing TD-NUCA design is more performing than the 

equivalent rectangular design. These cases are gcc 

benchmark with 4-2-2 configuration, twolf benchmark with 

4-2-2, 8-4-4 and 16-8-8 configurations, bzip2 with 16-8-8 

configuration. In particular, the architectures based on TD-

NUCA cache present the highest IPC. This means that, if 

the design issue is the realization of the most performing 

system running only the gcc or the bzip2 application, the 

optimal solution is based on the TD-NUCA cache, with a 

cache configuration whose size is half of the most 

performing D-NUCA cache. Such results indicate that TD-

NUCA cache can be utilized in application specific domains, 

i.e. in embedded system, in order to minimize silicon area, 

power consumption and maximize performance. As the main 

difference between D-NUCA cache and TD-NUCA cache 

lies in the mapping policies, i.e. the correspondence of 

banks and memory address, the results indicate that further 

improvement can be achieved by exploring different and ad 

hoc mapping policies, with a design-simulate-analyze 

methodology, which is typical of the design of cache 

memory in embedded system [12], [21], [22].  
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Figure 8: IPC of rectangular D-NUCA and TD-NUCA 
caches when running the gcc benchmark.
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Figure 9: IPC of rectangular D-NUCA and TD-NUCA 
caches when running the mcf benchmark. 
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Figure 10: IPC of rectangular D-NUCA and TD-
NUCA caches when running the twolf benchmark. 

6. Conclusion 
In this paper, we proposed a design targeting the 

optimization of NUCA cache memories, namely TD-NUCA 

caches. In particular, we deal with two different variants of 

TD-NUCA organization, increasing and decreasing TD-

NUCA caches. The results of our investigation show that 
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decreasing TD-NUCA caches allow a reduction of the 

silicon area approximately by 50% without heavy 

performance degradation. We showed also that the 

triangular design outperforms the equivalent rectangular 

design in some specific domain applications. Such a result 

enables to use TD-NUCA caches in application specific and 

embedded domains. We believe that with efforts on the 

mapping and search policies, the TD-NUCA design can be 

further improved. The support of the emerging Network on 

Chip infrastructures will become the key technology to 

improve TD-NUCA caches. A TD-NUCA cache may be 

viewed as a subset of a D-NUCA cache, with bank 

interconnected via a NoC. Such infrastructure permits the 

reconfiguration of mapping policies, routing and number of 

active banks, to adapt the cache architecture to the specific 

application. 
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Figure 11: IPC of rectangular D-NUCA and TD-
NUCA caches when running the bzip2 benchmark.
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