
A NUCA Model for Embedded Systems Cache Design

Pierfrancesco Foglia, Daniele Mangano, Cosimo Antonio Prete

Dipartimento di Ingegneria dell’Informazione, Via Diotisalvi 2, 56100 Pisa, Italy

{foglia,daniele.mangano,prete}@iet.unipi.it

Members of the Hipeac EU Network of Excellence

Abstract

Future embedded applications will require high

performance processors integrating fast and low-power

cache. Dynamic Non-Uniform Cache Architectures (D-

NUCA) have been proposed to overcome the performance

limit introduced by wire delays when designing large cache.

In this paper, we propose alternative designs of D-NUCA

cache, namely Triangular D-Nuca Cache, to reduce power

consumption and silicon area occupancy of D-Nuca cache.

We compare the performances of Triangular D-NUCA

cache with conventional rectangular organization. Results

show that our approach is particular useful in the embedded

applications domain, as it permits the utilization of half-

sized NUCA cache with performance improvements.

1. Introduction

Future mobile embedded environments need to support

sophisticated applications such as speech recognition, visual

feature recognition, secure wireless networking, and general

media processing. These applications are computation

intensive, and require more performance than the one

current embedded processor can deliver [16], [17].

Traditional ways to increase performances of embedded

processors include technology scaling (with the consequent

performance increase due to the Moore's law) [17], and the

tuning of cache hierarchy parameters [18]. Both the

techniques will be no more applicable to the design of such

family of processors, due to the wire delay problem and the

power requirement of embedded hand-held applications.

Traditional cache tuning and technology scaling techniques

determine increased chip power consumption [17], [18],

increased chip area devoted to the memory subsystem [14],

[15], and an increased wire delay (also due to the increased

memory area) , which, in turn, limits the overall processor

performances [1]. As a consequence, new design techniques

for processor architecture and memory hierarchy are

required.

Focusing the attention on the memory subsystem, the

NUCA (Non Uniform Cache Architecture) Caches [7, 8]

have been recently proposed to overcome the bottleneck due

to growing wire delays in general purpose systems. NUCA

caches are large L2 caches, organized in sub-bank. Each

sub-bank can be accessed independently, with an access

time depending on its physical distance from the cache

controller (it is the only delay that must be paid for

accessing the particular bank), thus achieving non uniform

access time.

In this paper we present an alternative design of D-

NUCA cache, targeting the minimization of both silicon area

and power consumption. Because of the geometric shape, we

named our proposal Triangular Dynamic NUCA (TD-

NUCA). Basically, TD-NUCA caches are D-NUCA caches

with a variable number of banks when moving in the

opposite direction of the controller. In particular, we deal

with two organizations, increasing and decreasing TD-

NUCA. The results of our investigation show that, in the

general purpose case, TD-NUCA design enables to reduce

the silicon area by approximately 50%, while paying some

performance degradation. In the cases typical of embedded

applications (where the application is known in advance),

TD-NUCA cache permits a silicon area reduction of

approximately 50%, while outperforming the solutions

based on DNUCA cache. Our research highlights that more

studies on the mapping policies and geometry are

worthwhile, as we have explored only few directions (i.e.

reducing the number of block and adopting fixed mapping

policy) in a wide design space, nevertheless achieving

promising results.

2. Rationale of TD-NUCA caches

In the NUCA architecture proposed in [7], [8], the L2

cache is organized in banks, which define a rectangular

memory geometry. Each bank may be accessed

independently, with an access time depending on the

physical location of the bank. An interconnection

infrastructure, based on switch (in the simpler design), on a

wormhole routed 2-D mesh with point-to-point links, or,

better, on a more general Network on Chip [23], [24], [25] is

utilized to guarantee the bank-controller communications.

The design space of NUCA cache is very large: a Mapping

Policy defines the number of addressable banks and how

memory lines are mapped to this bank; a Search Policy

defines the set of possible locations for a line; a Movement

Policy defines the way in which a line is moved, either

0-7803-9347-3/05/$20.00 ©2005 IEEE.
41

while resident in the cache or across different lifetimes in

the cache. Many of these policies have been explored in

[7,8]; results show that DNUCA cache achieves 1.5 times

the IPC of a traditional Uniform Cache Architecture (UCA)

of any size

A typical distribution of the bank accesses in a

rectangular D-NUCA cache, when adopting the most

performing policies ([7], [8]), is showed in Figure 1. Such a

distribution is a consequence of the best migration

mechanism [2], which implies that the most accessed data

migrate near the controller, while less used data move

toward the opposite side and possibly are evicted from the

cache. The exact shape of accesses distribution depends on

several issues (i.e. the application, the mapping policy, the

migration policy, etc.), but it has a qualitative distribution as

the one shown in Figure 1.

C

Figure 1: Qualitative accesses distribution in a D-
NUCA cache. Due to the migration policy, the most

accessed banks are within the darker area.

By analyzing the accesses distribution of Figure 1, our

idea is to modify the original D-NUCA design, by

eliminating from the cache the banks related to the less used

data, i.e. by implementing a cache with a decreasing number

of entries within a way, when moving in the opposite

direction of the controller. In this way, we could be able to

reduce the cache size, and consequently the cache area, with

low performance degradation. By eliminating banks, we can

also reduce the static power consumption. This is an

important issue in the design of embedded system, as cache

memory may consume up to 50% of total chip power, while

static energy dissipation is going to account for an

increasing portion of total energy in current and future

technologies [19], [20].

CC

Figure 2: Increasing and decreasing TD-NUCA
organizations.

The above idea leads to a triangular organization, i.e. a

Triangular D-NUCA (TD-NUCA) memory and we consider

the two organizations showed in Figure 2. According to the

accesses distribution, the decreasing solution should meet

lower miss rate than the increasing solution. On the other

hand, by using specific technique [11], the increasing

organization could allow a higher power consumption

reduction. In fact, power consumption includes static and

dynamic terms. The dynamic term could be reduced by using

transistors with different threshold voltages: transistors

located on most used banks are high-power and faster,

whereas the transistors located in the further banks are low-

power but slower [11].

3. D-NUCA caches and related works

Although significant prior work has evaluated large

cache design [5, 4], the D-NUCA cache architecture has

been proposed in [7, 8], showing that a dynamic NUCA

design achieves 1.5 times the IPC of a traditional Uniform

Cache Architecture (UCA) of any size. In order to evaluate

the effects of the different organizations on system

performance, the author developed an experimental

methodology based on Cacti [12] to derive the physical

model of cache memory, and an extended version of the sim-

alpha simulator [3] to simulate the different organizations

with parameters derived from Cacti. In a more recent work

[9], a fully-associative approach for NUCA memory has

been proposed. In this case, a Globally Asynchronous

Locally Synchronous (GALS) Network on Chip (NoC) is

employed as communication infrastructure, according to the

switched-network paradigm. D-NUCA memories have been

also analyzed in the contest of on chip multiprocessor as

shared level-two caches [2]. In such a work commercial and

scientific benchmarks have been employed, and the results

show that migration mechanism are less effective for CMPs

because 40-60% of L2 cache hits in commercial workloads

are satisfied in the central banks, which are equally far from

each processor. An approach for reducing the power

consumption in NUCA cache memories has been proposed

in [11]. In such a proposal the key idea is to allow the ways

within a cache to be accessed at different speeds and to

place infrequently accessed data into the slow ways.

A lot of works have been done on the design of low

power cache in embedded systems. These studies are

consequence of the importance of the cache on processor

performances, and the increased power consumption (both

static and dynamic) of the memory subsystem [19], [20].

An important trend in the design of low power, high

performance hardware consists in the partitioning of

hardware components in smaller and less energy-consuming

units [26]. This trend has been utilized in both the design of

processor internal architectures [27] and cache memories

[12]. Following such approach, Kim et al. [26] proposed

sub-cache to reduce power consumption of L1 instruction

cache in embedded system. In sub-cache architecture, a

cache is split into several smaller units, each of which is a

42

cache by itself. Another approach to reduce power

consumption consists in adding a small instruction cache

(tiny cache). It has been proposed by Jouppi [29], in the

field of general purpose system, and it has been applied to

the design of instruction cache for embedded systems [28].

Similarly, filter cache has been utilized to minimize energy

consumption of instruction cache [30]: the idea is that if

most of a program’s time is spent in loop, then most hits

occur in the filter cache.

All these papers address the problem of reducing cache

memories power consumption in embedded systems. Like

our work, most of these solutions utilize sub-banking or

similar issues (little cache and/or sub-cache), but they not

deal with the wire delay problem, so, differently from our

work, they will be no more applicable to the design of future

high performance, low power embedded processor.

Other techniques have been developed, but in most

cases, they incur in additional latencies, so they are not

useful for the design of high performance embedded system.

With the delayed access [26], [31], the reduction of power

consumption is achieved by activating only the cache bank

that will be accessed: the access to data array is delayed

until the access to the tag array indicates the right way.

Other schemas try to predict the way which is accessed [32],

or try to change the number of ways activated depending on

the application behaviors [33].

Also configurable cache architectures have been studied.

The first proposals deal with performance, while more

recent works consider also power consumption.

Ranganathan et al. [35] proposed configurable cache

architecture for general purpose processors. When used in

media applications, a large cache may not give benefits due

to the data characteristics of media applications. In this case,

the authors propose of dynamically reconfigure part of the

cache, to be used for other processor activities, such as

instruction reuse. Kim et al. [36] proposed a multifunction

cache architecture, which partitions the cache into a

dedicated cache and a configurable cache. The configurable

part can be used to implement computations, for example,

FIR and DCT/IDCT, which takes advantage of on-chip

resources when an application does not need the whole

cache.

Zhang et al., propose specific hardware on-chip

implementing cache tuning heuristic, with the aims of

reducing power consumptions in embedded processors [20].

They propose also [34] a reconfigurable cache architecture,

in which cache size (by shutting up or down ways), line size

and associativity (via way concatenations) may be tuned to

the application needs. Way shutdown cache methods have

been proposed independently by Albonesi [37] and by the

designers of the Motorola M*CORE processor [38]. In those

approaches, a designer would initially profile a program to

determine how many ways could be shut down without

causing too much performance degradation. Albonesi also

discusses dynamic way shutdown and activation for different

regions of a program. As NUCA and TDNUCA cache are

highly reconfigurable, we plan to extend our work on TD-

NUCA by evaluating reconfigurable techniques. In

particular, we can consider a TD-NUCA cache as a NUCA

cache obtained by applying way shutdown techniques.

Besides, both the design introduces another dimension in

the design space: due to the NOC infrastructure, also the

mapping and searching algorithm can be dynamically

changed. In our paper, we want to explore the potential

benefits of applying such techniques. In another work we

plan to explore the feasibility and the cost of implementing

reconfigurable techniques in D-NUCA caches.

4. Design of TD-NUCA caches

In order to completely define the TD-NUCA model,

besides the size and the numbers of blocks, the definition of

the mapping, search, movement and replacement policies is

needed. We evaluated different solutions, and we report in

this paper only the meaningfully results. We mainly refer to

the increasing TD-NUCA organization in order to present

our proposal, but the whole work can easily be extended to

the decreasing solution.

Figure 3: Comparison between D-NUCA and TD-
NUCA memories.

With respect to the mapping policy, we adopt a spread-

sets approach for the TD-NUCA organization. Differently

from the original proposal [7], [8], in our case all of the

bank sets share some banks in a similar way to the shared

mapping proposed for rectangular D-NUCA caches. The

figure 3 shows the comparison between four-way D-NUCA

and four-way increasing TD-NUCA memories. The numbers

superimposed on the cache banks show the hops (and the

delays) needed to communicate with the controller.

Similarly to the mapping policies proposed in prior work,

for TD-NUCA designs we adopt the simple mapping and

fair mapping policies. The two different mapping policies

are shown in the figure 4. In the simple mapping policy, a

cache line of a generic bank can be mapped in the next way

into two different banks1. The main drawback of this

solution is that some memory addresses can be mapped only

into the banks with high delay, whereas other memory

addresses can be mapped only into banks with low delay. In

the fair mapping policy, the two possible destinations for

1The sets are defined by all of the possible paths shown in figure, i.e.

those that lead from the controller to the banks on the end column.

43

each cache line have the same delay, so that the average

access times across all paths are equalized2.

We evaluated and adapted the incremental and multicast

search policies. In the incremental search, the banks are

searched in order starting from the closest bank until the

requested line is found or a miss occurs in the last bank.

According to this technique, a request is routed toward the

first bank of the set, where, if no hit occurs, the request is

routed through the shortest path toward the next bank of the

set. This is repeated until a hit or a miss occurs.

Unfortunately, this solution is effective only for the simple

mapping. In fact, using the incremental search in

conjunction with the fair mapping policy, in some cases the

requests have to follow longer paths than the shortest ones,

and the average access time to the banks is worse than the

one in the rectangular D-NUCA. In order to overcome such a

limitation, our final choice is to use the multicast search

technique. In this case, all of the requests are routed in a

middle channel from where they proceed in parallel across

both the columns and the rows. Figure 5 shows an example

of path followed by a request in both the search techniques,

in the case of fair mapping policy.

Figure 4: The two different mapping policies.

Figure 5: Example of access with both incremental
search and multicast search.

With respect to movement policy, we employ the

generation promotion technique proposed for rectangular D-

2 Also for this solution the sets are defined by all of the possible paths

that lead from the controller to the banks on the end column.

NUCA caches. For the replacement policy, we consider two

of the possible strategies proposed in the prior work, tail

insertion in conjunction to a zero-copy policy and random

insertion in conjunction to a one-copy policy.

5. Results
In order to evaluate our proposals, we use the same

experimental methodology and some of the benchmarks

proposed in [7, 8]. The SPECINT2000 benchmarks used for

performance evaluation and the related parameters are listed

in table 1. The parameters FFWD and RUN are respectively

the number of instructions skipped to reach the phase start

and the number of instructions simulated. Table 1 also lists

the number of L2 accesses per 1 million instructions

assuming 64KB level-1 instruction and data caches [6]. As

done in the previous work, we assume a constant L2 cache

area and vary the technology generation to scale cache

capacity within that area, according to the SIA Roadmap

[13] predictions. We analyze the same cases and use the

same performance parameters (i.e. IPC and Miss Rate) of

the work [7, 8], to get comparable results.

Table 1: Benchmarks used for performance
evaluation.

Phase
SPECINT2000

RUN FFWD

L2 load acc/

Million Instr.

gcc 2,367B 300M 25.900

mcf 5B 200M 260.620

bzip2 744B 1B 9.300

twolf 511B 200M 22.500

We modified the extended sim-alpha simulator for

supporting our TD-NUCA organization. In order to perform

a meaningful comparison and validate the changes to the

simulator, we repeated the simulations also for rectangular

D-NUCA caches. The results that we obtained show that our

TD-NUCA simulator is coherent to the previous D-NUCA

simulator.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2MB-1MB-1MB 4MB-2MB-2MB 8MB-4MB-4MB 16MB-8MB-8MB

Cache Size

IPCRec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Figure 6: IPC of rectangular D-NUCA and TD-NUCA
caches.

Our preliminary investigation uses a baseline

configuration. Such a configuration uses fair mapping,

multicast search, single bank promotion upon each hit and

tail insertion. We explored different memory sizes, i.e.

1MB, 2MB, 4MB and 8MB comparing the results

respectively with 16MB, 8MB, 4MB and 2MB rectangular

D-NUCA caches. Figure 6 and Figure 7 summarize the

simulation results obtained by averaging the different results

44

of all benchmarks. In particular, these figures show

respectively the IPC and the miss rate for 2MB, 4MB, 8MB

and 16MB D-NUCA caches and for the equivalent

increasing and decreasing TD-NUCA caches (i.e. for 1MB,

2MB, 4MB and 8MB sizes).

The smallest gap between the IPCs (i.e. the best case) is

achieved with 16MB D-NUCA and 8MB TD-NUCAs (i.e.

16-8-8 configuration). As in the previous work, the 16MB

rectangular organization has 16x16 banks, whereas the 8MB

TD-NUCAs have each four columns by two banks, four

columns by four banks, four columns by eight banks and

four columns by sixteen banks. First, we observe that the

increasing solution has a lower IPC than the decreasing one.

Since the miss rate is very low in both cases, such a result is

due to the different average access times. The IPC of the

decreasing cache is approximately that of the rectangular D-

NUCA, whereas the increasing cache reduces the IPC by

approximately 9%.

0

0.05

0.1

0.15

0.2

0.25

0.3

2MB-1MB-1MB4MB-2MB-2MB8MB-4MB-4MB 16MB-8MB-

8MB

Cache Size

Miss Rate

R e c . D - N U C A

I n c . T D - N U C A

D e c . T D - N U C A

Figure 7: Miss-rate of rectangular D-NUCA and TD-
NUCA caches.

The greatest gap between the IPCs (i.e. the worst case) is

achieved with 8MB D-NUCA and 4MB TD-NUCAs (i.e. 8-

4-4 configuration). In such case, the rectangular organization

has 16x8 banks, whereas the TD-NUCAs have each two

columns by two banks, two columns by four banks, two

columns by eight banks and two columns by sixteen banks.

Also the decreasing cache introduces performance

degradation reducing the IPC by approximately 16% with

respect to the rectangular cache. However, the performances

of the decreasing cache are higher than increasing one.The

figures show that increasing caches are better than

decreasing ones. Moreover, TD-NUCA caches have

approximately the same IPC of D-NUCA caches with the

same sizes.

The figures 8, 9, 10 and 11, present the comparison

between the IPC of rectangular D-NUCA and TD-NUCA

caches respectively for gcc, mcf, bzip2 and twolf

benchmarks. These figures show that, in some cases, the

increasing TD-NUCA design is more performing than the

equivalent rectangular design. These cases are gcc

benchmark with 4-2-2 configuration, twolf benchmark with

4-2-2, 8-4-4 and 16-8-8 configurations, bzip2 with 16-8-8

configuration. In particular, the architectures based on TD-

NUCA cache present the highest IPC. This means that, if

the design issue is the realization of the most performing

system running only the gcc or the bzip2 application, the

optimal solution is based on the TD-NUCA cache, with a

cache configuration whose size is half of the most

performing D-NUCA cache. Such results indicate that TD-

NUCA cache can be utilized in application specific domains,

i.e. in embedded system, in order to minimize silicon area,

power consumption and maximize performance. As the main

difference between D-NUCA cache and TD-NUCA cache

lies in the mapping policies, i.e. the correspondence of

banks and memory address, the results indicate that further

improvement can be achieved by exploring different and ad

hoc mapping policies, with a design-simulate-analyze

methodology, which is typical of the design of cache

memory in embedded system [12], [21], [22].

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2MB-1MB-

1MB

4MB-2MB-

2MB

8MB-4MB-

4MB

16MB-8MB-

8MB

Cache Size

IPC Rec. D-NUCA
Inc. TD-NUCA
Dec. TD-NUCA

Figure 8: IPC of rectangular D-NUCA and TD-NUCA
caches when running the gcc benchmark.

0

0.1

0.2

0.3

0.4

0.5

2MB-1MB-1MB4MB-2MB-2MB8MB-4MB-4MB 16MB-8MB-

8MB

Cache Size

IPC
Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Figure 9: IPC of rectangular D-NUCA and TD-NUCA
caches when running the mcf benchmark.

0

0.2

0.4

0.6

0.8

1

2MB-1MB-1MB4MB-2MB-2MB8MB-4MB-4MB 16MB-8MB-

8MB

Cache Size

IPC Rec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Figure 10: IPC of rectangular D-NUCA and TD-
NUCA caches when running the twolf benchmark.

6. Conclusion
In this paper, we proposed a design targeting the

optimization of NUCA cache memories, namely TD-NUCA

caches. In particular, we deal with two different variants of

TD-NUCA organization, increasing and decreasing TD-

NUCA caches. The results of our investigation show that

45

decreasing TD-NUCA caches allow a reduction of the

silicon area approximately by 50% without heavy

performance degradation. We showed also that the

triangular design outperforms the equivalent rectangular

design in some specific domain applications. Such a result

enables to use TD-NUCA caches in application specific and

embedded domains. We believe that with efforts on the

mapping and search policies, the TD-NUCA design can be

further improved. The support of the emerging Network on

Chip infrastructures will become the key technology to

improve TD-NUCA caches. A TD-NUCA cache may be

viewed as a subset of a D-NUCA cache, with bank

interconnected via a NoC. Such infrastructure permits the

reconfiguration of mapping policies, routing and number of

active banks, to adapt the cache architecture to the specific

application.

1.2

1.25

1.3

1.35

1.4

1.45

2MB-1MB-1MB 4MB-2MB-2MB 8MB-4MB-4MB 16MB-8MB-8MB

IPCRec. D-NUCA

Inc. TD-NUCA

Dec. TD-NUCA

Figure 11: IPC of rectangular D-NUCA and TD-
NUCA caches when running the bzip2 benchmark.

7. Acknowledgement
This work has been supported by the Italian MIUR, under the

FIRB Project “Methodology to Design High Performance Processor

and Memory Architectures” and by the EC Hipeac Network of

Excellence. Stephen Keckler furnishes us the Sim-Alpha and modified

Sim-Alpha simulators.

8. References
[1] V. Agarwal, M. S. Hrishikesh, S.W. Keckler, and D. Burger. Clock rate vs.

IPC: The end of the road for conventional microprocessors. Proc. 27th Annual Int.

Symp. on Computer Architecture, pages 248–259, June 2000.

[2] B.M. Beckmann, and D.A. Wood. Managing Wire-Delay in Large Chip Multi-

Processor Caches. Proc. 37th Int. Symp. on Microarchitecture, 2004.

[3] R. Desikan, D. Burger, S.W. Keckler, and T.M. Austin. Simalpha: A validated

execution-driven alpha 21264 simulator. Technical Report TR-01-23, Dept. of

Computer Sciences, University of Texas at Austin, 2001.

[4] E.G. Hallnor and S.K. Reinhardt. A fully associative software-managed cache

design. 27th Symp. on Comp. Architecture, pages 107–116, June 2000.

[5] R.E. Kessler. Analysis of Multi-Megabyte Secondary CPU Cache Memories.

PhD thesis, Univ. of Wisconsin-Madison, Dec. 1989.

[6] R.E. Kessler, M.D. Hill, and D.A. Wood. A comparison of trace-sampling

techniques for multi-megabyte caches. IEEE Trans. on Computers, 43(6): 664–

675, June 1994.

[7] C. Kim, D. Burger, S. W. Keckler. An Adaptive, Non-Uniform Cache

Structure for Wire-Delay Dominated On-Chip Caches. Int. Conf. on Arch. Sup.

for Prog. Lang. and Oper. Sys., pp. 211-222, October, 2002.

[8] C. Kim, D. Burger, S. W. Keckler. Nonuniform cache architectures for wire-

delay dominated on-chip caches. IEEE Micro, 23:6, pp. 99-107,

November/December, 2003.

[9] A. Kodama, T. Sato. A Non-Uniform Cache Architecture on Networks-on-

Chip: A Fully Associative Approach with Pre-Promotion. 10th Int. Symp. on

Integrated Circuits, Devices and Systems, September 2004.

[10] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers, San Mateo, CA, 3rd edition, 2002.

[11] A. Sakanaka, T. Sato. A Leakage-Energy-Reduction Technique for High-

Associativity Caches in Embedded Systems. MEDEA Workshop, pp.51-56, New

Orleans (LU), September 2003.

[12] S. Wilton and N. Jouppi. Cacti: An enhanced cache access and cycle time

model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996.

[13] The national technology roadmap for semiconductors. Semiconductor

Industry Association, 1999.

[14] R. Otten, P. Stravers. Challenges in Phisical Chip Design. Proc. Int. Conf. on

Computer Aided Design, San Jos´e, CA, pp. 84–91, November 2000.

[15] P. R. Groeneveld. Physical Design Challenges for Billion Transistor Chips.

Int. Conf. on Computer Design: VLSI in Computers and Processors, Freiburg,

Germany, pp. 78-83, Sept. 2002.

[16] M. Schlett. Trends in Embedded-Microprocessor Design. IEEE Computer,

Vol. 31, N. 8, pp. 44-49, August 1998.

[17] B. Mathew, A. Davis, M. Parker. A Low Power Architecture for Embedded

Perception. Proc. Int. Conf. on Compilers, Architecture and Synthesis for

Embedded Systems, Washington D.C., pp. 46-56, Sept, 2004

[18] A. Gosh, T. Girvagis. Cache Optimization for Embedded Processor Cores:

An Analytical Approach. ACM Trans. on Design Automation of Electronic

Systems. Vol. 9, Issue 4, Pages: 419 – 440, October 2004.

[19] C. Zhang, F. Vahid, W. Naijar. A highly configurable cache architecture for

embedded systems. Int. Symp. on Comp. Arch.. San Diego, CA, pp 136-146, June

2003.

[20] C. Zhang, F. Vahid, W. Naijar. A Highly Configurable Cache Architecture

for Low Energy Embedded Systems. ACM Trans. on Emb. Computing Systems,

Vol. 4, N. 2, pp. 363–387, May 2005.

[21] T. Sato. Evaluating Trace Cache on Moderate-Scale Processors. IEEE

Computer, vol. 147, no. 6, 2000.

[22] A. Ghosh, T. Givargis. Cache Optimization for Embedded Processor Cores:

An Analytical Approach. ACM Trans. on Design Automation of Electronic

Systems, Vol. 9, N. 4, pp: 419 – 440, October 2004

[23] L. Benini and G. D. Micheli. Powering networks on chips. Proc. Int. System

Synthesis Symp., pp 33–38, 2001.

[24] W. J. Dally and B. Towles. Route packets, not wires: On chip

interconnection networks. Proc. D. A. C., pages 684–689, 2001.

[25] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and A.

Sangiovanni-Vincentelli. Addressing the system-on-a-chip interconnect woes

through communication-based design. In Proc. Design Automation Conference,

pp. 667–672, 2001.

[26] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam and M. J.

Irwin. Partitioned instruction cache architecture for energy efficiency. ACM

Trans. on Embedded Computing Systems, vol. 2, n. 2, 2003.

[27] J. Cruz, A. González, M. Valero, N. P. Topham. Multiple-Banked Register

File Architectures. Proc. of 27th. Ann. Int. Symp. on Computer Architecture,

Vancouver (Canada), June 12-14, 2000, pages 316-325.

[28] A. Gordon-Ross, S. Cotterell, F. Vahid. Tiny Instruction Caches for Low

Power Embedded Systems. ACM Trans. on Embedded Computing System, vol.

2, n. 4, pp. 449-491, 2003.

[29] N. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. Proc. 17th Int. Symp. on

Computer Architecture, pages 364--373, Seattle, Washington, May 1990.

[30] J. Kin, M. Gupta, W. MangioneSmith. The Filter Cache: An Energy Efficient

Memory Structure. Symp. on Microarchitecture, pp. 184-193, 1997.

[31] A. P. Chandrakasan, W. J. Bowhill, F. Fox. Design of High-Performance

Microprocessor Circuits. Wiley-IEEE Press, 2000.

[32] K. Inoue, T. Ishihara, K. Murakami. Way-predicting set-associative cache for

high performance and low energy consumption. Proc. Int. Symp. on Low Power

Electronics and Design, pp. 273-275, San Diego, CA, 1999.

[33] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, K. Roy. Reducing

set-associative cache energy via way-prediction and selective direct-mapping. 34th

Int. Symp. on Microarchitecture, pp. 54-65. Austin, TX, 2001.

[34] C. Zhang, F. Vahid, R. Lysecky. A self-tuning cache architecture for

embedded systems. ACM Trans. on Emb. Comp. Systems, vol. 3, n. 2, 2004.

[35] P. Ranganathan, S. Adve, N. Jouppi. Reconfigurable caches and their

application to media processing. Proc. 27th Annual Int. Symp. on Computer

Architecture, pp. 214—224, Vancouver, Canada, 2000.

[36] H. Kim, A. K. Somani, A. Tyagi. A reconfigurable multi-function computing

cache architecture. IEEE Trans. on VLSI Systems. Vol. 9, N. 4, PP. 509-523,

August 2001.

[37] D. H. Albonesi. Selective cache ways: on-demand cache resource allocation.

32nd Int. Symp. on MicroA., pp. 248-259, Haifa, Israel, Nov. 1999.

[38] A. Malik, B. Moyer, D. Cermak. A low power unified cache architecture

providing power and performance flexibility. Proc. 2000 Int. Symp. on Low

Power Electronics and Design, pp-241-243 , Rapallo, Italy, July 2000.

46

